Learn Programming For Data Science
Project description
DATAIDEA Quickstart
What is the dataidea
package?
This is a package we are currently developing to help new and old data analysists walk around some repetitive and sometimes disturbing tasks that a data analyst does day to day
This library currently extends and depends on majorly numpy, pandas as sklearn and these, among a few others will be installed once you install dataidea
Installing dataidea
- To install dataidea, you must have python installed on your machine
- It's advised that you install it in a virtual environment
- You can install
dataidea
using the command below
pip install dataidea
Learning dataidea
The best way to get started with dataidea (and data analysis) is to complete the free course.
To see what’s possible with dataidea, take a look at the Quick Start
Read through the Tutorials to learn how to load datasets, train your own models on your own datasets. Use the navigation to look through the dataidea documentation. Every class, function, and method is documented here.
Loading Datasets
dataidea
has loadDataset
method which allows you to quickly load inbuilt datasets useful for the course. You can import loadDataset
from the datasets
module and use it to load your dataset
from dataidea.datasets import loadDataset
weather_data = loadDataset('weather')
weather_data.head()
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
day | temperature | windspead | event | |
---|---|---|---|---|
0 | 01/01/2017 | 32.0 | 6.0 | Rain |
1 | 04/01/2017 | NaN | 9.0 | Sunny |
2 | 05/01/2017 | 28.0 | NaN | Snow |
3 | 06/01/2017 | NaN | 7.0 | NaN |
4 | 07/01/2017 | 32.0 | NaN | Rain |
Saving and loading models
The dataidea
package offers saveModel
and loadModel
which allow you save and load your models while maintaining the programming priciples that we learn through the course. You can import saveModel
and loadModel
from the models module.
# dimporting the model
from sklearn.tree import DecisionTreeClassifier
# setting X and y
X = music_data.drop('genre', axis=1)
y = music_data.genre
# initializing and fitting the model
classifier = DecisionTreeClassifier()
classifier.fit(X, y)
<style>#sk-container-id-2 {
/* Definition of color scheme common for light and dark mode */
--sklearn-color-text: black;
--sklearn-color-line: gray;
/* Definition of color scheme for unfitted estimators */
--sklearn-color-unfitted-level-0: #fff5e6;
--sklearn-color-unfitted-level-1: #f6e4d2;
--sklearn-color-unfitted-level-2: #ffe0b3;
--sklearn-color-unfitted-level-3: chocolate;
/* Definition of color scheme for fitted estimators */
--sklearn-color-fitted-level-0: #f0f8ff;
--sklearn-color-fitted-level-1: #d4ebff;
--sklearn-color-fitted-level-2: #b3dbfd;
--sklearn-color-fitted-level-3: cornflowerblue;
/* Specific color for light theme */
--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
--sklearn-color-icon: #696969;
@media (prefers-color-scheme: dark) {
/* Redefinition of color scheme for dark theme */
--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
--sklearn-color-icon: #878787;
}
}
#sk-container-id-2 {
color: var(--sklearn-color-text);
}
#sk-container-id-2 pre {
padding: 0;
}
#sk-container-id-2 input.sk-hidden--visually {
border: 0;
clip: rect(1px 1px 1px 1px);
clip: rect(1px, 1px, 1px, 1px);
height: 1px;
margin: -1px;
overflow: hidden;
padding: 0;
position: absolute;
width: 1px;
}
#sk-container-id-2 div.sk-dashed-wrapped {
border: 1px dashed var(--sklearn-color-line);
margin: 0 0.4em 0.5em 0.4em;
box-sizing: border-box;
padding-bottom: 0.4em;
background-color: var(--sklearn-color-background);
}
#sk-container-id-2 div.sk-container {
/* jupyter's `normalize.less` sets `[hidden] { display: none; }`
but bootstrap.min.css set `[hidden] { display: none !important; }`
so we also need the `!important` here to be able to override the
default hidden behavior on the sphinx rendered scikit-learn.org.
See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
display: inline-block !important;
position: relative;
}
#sk-container-id-2 div.sk-text-repr-fallback {
display: none;
}
div.sk-parallel-item,
div.sk-serial,
div.sk-item {
/* draw centered vertical line to link estimators */
background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
background-size: 2px 100%;
background-repeat: no-repeat;
background-position: center center;
}
/* Parallel-specific style estimator block */
#sk-container-id-2 div.sk-parallel-item::after {
content: "";
width: 100%;
border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
flex-grow: 1;
}
#sk-container-id-2 div.sk-parallel {
display: flex;
align-items: stretch;
justify-content: center;
background-color: var(--sklearn-color-background);
position: relative;
}
#sk-container-id-2 div.sk-parallel-item {
display: flex;
flex-direction: column;
}
#sk-container-id-2 div.sk-parallel-item:first-child::after {
align-self: flex-end;
width: 50%;
}
#sk-container-id-2 div.sk-parallel-item:last-child::after {
align-self: flex-start;
width: 50%;
}
#sk-container-id-2 div.sk-parallel-item:only-child::after {
width: 0;
}
/* Serial-specific style estimator block */
#sk-container-id-2 div.sk-serial {
display: flex;
flex-direction: column;
align-items: center;
background-color: var(--sklearn-color-background);
padding-right: 1em;
padding-left: 1em;
}
/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
clickable and can be expanded/collapsed.
- Pipeline and ColumnTransformer use this feature and define the default style
- Estimators will overwrite some part of the style using the `sk-estimator` class
*/
/* Pipeline and ColumnTransformer style (default) */
#sk-container-id-2 div.sk-toggleable {
/* Default theme specific background. It is overwritten whether we have a
specific estimator or a Pipeline/ColumnTransformer */
background-color: var(--sklearn-color-background);
}
/* Toggleable label */
#sk-container-id-2 label.sk-toggleable__label {
cursor: pointer;
display: block;
width: 100%;
margin-bottom: 0;
padding: 0.5em;
box-sizing: border-box;
text-align: center;
}
#sk-container-id-2 label.sk-toggleable__label-arrow:before {
/* Arrow on the left of the label */
content: "▸";
float: left;
margin-right: 0.25em;
color: var(--sklearn-color-icon);
}
#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {
color: var(--sklearn-color-text);
}
/* Toggleable content - dropdown */
#sk-container-id-2 div.sk-toggleable__content {
max-height: 0;
max-width: 0;
overflow: hidden;
text-align: left;
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-0);
}
#sk-container-id-2 div.sk-toggleable__content.fitted {
/* fitted */
background-color: var(--sklearn-color-fitted-level-0);
}
#sk-container-id-2 div.sk-toggleable__content pre {
margin: 0.2em;
border-radius: 0.25em;
color: var(--sklearn-color-text);
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-0);
}
#sk-container-id-2 div.sk-toggleable__content.fitted pre {
/* unfitted */
background-color: var(--sklearn-color-fitted-level-0);
}
#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {
/* Expand drop-down */
max-height: 200px;
max-width: 100%;
overflow: auto;
}
#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
content: "▾";
}
/* Pipeline/ColumnTransformer-specific style */
#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
color: var(--sklearn-color-text);
background-color: var(--sklearn-color-unfitted-level-2);
}
#sk-container-id-2 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
background-color: var(--sklearn-color-fitted-level-2);
}
/* Estimator-specific style */
/* Colorize estimator box */
#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-2);
}
#sk-container-id-2 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
/* fitted */
background-color: var(--sklearn-color-fitted-level-2);
}
#sk-container-id-2 div.sk-label label.sk-toggleable__label,
#sk-container-id-2 div.sk-label label {
/* The background is the default theme color */
color: var(--sklearn-color-text-on-default-background);
}
/* On hover, darken the color of the background */
#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {
color: var(--sklearn-color-text);
background-color: var(--sklearn-color-unfitted-level-2);
}
/* Label box, darken color on hover, fitted */
#sk-container-id-2 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
color: var(--sklearn-color-text);
background-color: var(--sklearn-color-fitted-level-2);
}
/* Estimator label */
#sk-container-id-2 div.sk-label label {
font-family: monospace;
font-weight: bold;
display: inline-block;
line-height: 1.2em;
}
#sk-container-id-2 div.sk-label-container {
text-align: center;
}
/* Estimator-specific */
#sk-container-id-2 div.sk-estimator {
font-family: monospace;
border: 1px dotted var(--sklearn-color-border-box);
border-radius: 0.25em;
box-sizing: border-box;
margin-bottom: 0.5em;
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-0);
}
#sk-container-id-2 div.sk-estimator.fitted {
/* fitted */
background-color: var(--sklearn-color-fitted-level-0);
}
/* on hover */
#sk-container-id-2 div.sk-estimator:hover {
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-2);
}
#sk-container-id-2 div.sk-estimator.fitted:hover {
/* fitted */
background-color: var(--sklearn-color-fitted-level-2);
}
/* Specification for estimator info (e.g. "i" and "?") */
/* Common style for "i" and "?" */
.sk-estimator-doc-link,
a:link.sk-estimator-doc-link,
a:visited.sk-estimator-doc-link {
float: right;
font-size: smaller;
line-height: 1em;
font-family: monospace;
background-color: var(--sklearn-color-background);
border-radius: 1em;
height: 1em;
width: 1em;
text-decoration: none !important;
margin-left: 1ex;
/* unfitted */
border: var(--sklearn-color-unfitted-level-1) 1pt solid;
color: var(--sklearn-color-unfitted-level-1);
}
.sk-estimator-doc-link.fitted,
a:link.sk-estimator-doc-link.fitted,
a:visited.sk-estimator-doc-link.fitted {
/* fitted */
border: var(--sklearn-color-fitted-level-1) 1pt solid;
color: var(--sklearn-color-fitted-level-1);
}
/* On hover */
div.sk-estimator:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover,
div.sk-label-container:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover {
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-3);
color: var(--sklearn-color-background);
text-decoration: none;
}
div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover,
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover {
/* fitted */
background-color: var(--sklearn-color-fitted-level-3);
color: var(--sklearn-color-background);
text-decoration: none;
}
/* Span, style for the box shown on hovering the info icon */
.sk-estimator-doc-link span {
display: none;
z-index: 9999;
position: relative;
font-weight: normal;
right: .2ex;
padding: .5ex;
margin: .5ex;
width: min-content;
min-width: 20ex;
max-width: 50ex;
color: var(--sklearn-color-text);
box-shadow: 2pt 2pt 4pt #999;
/* unfitted */
background: var(--sklearn-color-unfitted-level-0);
border: .5pt solid var(--sklearn-color-unfitted-level-3);
}
.sk-estimator-doc-link.fitted span {
/* fitted */
background: var(--sklearn-color-fitted-level-0);
border: var(--sklearn-color-fitted-level-3);
}
.sk-estimator-doc-link:hover span {
display: block;
}
/* "?"-specific style due to the `` HTML tag */
#sk-container-id-2 a.estimator_doc_link {
float: right;
font-size: 1rem;
line-height: 1em;
font-family: monospace;
background-color: var(--sklearn-color-background);
border-radius: 1rem;
height: 1rem;
width: 1rem;
text-decoration: none;
/* unfitted */
color: var(--sklearn-color-unfitted-level-1);
border: var(--sklearn-color-unfitted-level-1) 1pt solid;
}
#sk-container-id-2 a.estimator_doc_link.fitted {
/* fitted */
border: var(--sklearn-color-fitted-level-1) 1pt solid;
color: var(--sklearn-color-fitted-level-1);
}
/* On hover */
#sk-container-id-2 a.estimator_doc_link:hover {
/* unfitted */
background-color: var(--sklearn-color-unfitted-level-3);
color: var(--sklearn-color-background);
text-decoration: none;
}
#sk-container-id-2 a.estimator_doc_link.fitted:hover {
/* fitted */
background-color: var(--sklearn-color-fitted-level-3);
}
</style>DecisionTreeClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Now that we have trained our model, let's try saving and loading it, and use the loaded model for predictions
from dataidea.models import saveModel, loadModel
# saving the model
saveModel(model=classifier, filename='genre_classifier.di')
# loading the model
loaded_model = loadModel(filename='genre_classifier.di')
# predicting X
loaded_model.predict(X)
array(['HipHop', 'HipHop', 'HipHop', 'Jazz', 'Jazz', 'Jazz', 'Classical',
'Classical', 'Classical', 'Dance', 'Dance', 'Dance', 'Acoustic',
'Acoustic', 'Acoustic', 'Classical', 'Classical', 'Classical',
'Classical', 'Classical'], dtype=object)
more to follow...
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dataidea-0.1.5.tar.gz
.
File metadata
- Download URL: dataidea-0.1.5.tar.gz
- Upload date:
- Size: 921.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a77d15c882ed1e2be154517a022724b51a1c863cf5ccee43877b017ec099e08 |
|
MD5 | 5827302ff28816451ad81324bdb46e9e |
|
BLAKE2b-256 | 1dcce79ee057e903e010437d8291487603bae137b9cd748690d49605a8e96311 |
File details
Details for the file dataidea-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: dataidea-0.1.5-py3-none-any.whl
- Upload date:
- Size: 935.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 903a221f52a51d063a1e419d5359ec16b9dadd7de1caed14ef2bb3c5f043669c |
|
MD5 | 17cd31d4e8f3ab23687fb7bd759416d6 |
|
BLAKE2b-256 | e1f77e08c8223ef6be8399d9754f6a8761202cb16820ead20402328750e6a93b |