Skip to main content

Learn Programming For Data Science

Project description

DATAIDEA Quickstart

What is the dataidea package?

This is a package we are currently developing to help new and old data analysists walk around some repetitive and sometimes disturbing tasks that a data analyst does day to day

This library currently extends and depends on majorly numpy, pandas as sklearn and these, among a few others will be installed once you install dataidea

Installing dataidea

  • To install dataidea, you must have python installed on your machine
  • It's advised that you install it in a virtual environment
  • You can install dataidea using the command below
pip install dataidea

Learning dataidea

The best way to get started with dataidea (and data analysis) is to complete the free course.

To see what’s possible with dataidea, take a look at the Quick Start

Read through the Tutorials to learn how to load datasets, train your own models on your own datasets. Use the navigation to look through the dataidea documentation. Every class, function, and method is documented here.

Loading Datasets

dataidea has loadDataset method which allows you to quickly load inbuilt datasets useful for the course. You can import loadDataset from the datasets module and use it to load your dataset

from dataidea.datasets import loadDataset

weather_data = loadDataset('weather')
weather_data.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
day temperature windspead event
0 01/01/2017 32.0 6.0 Rain
1 04/01/2017 NaN 9.0 Sunny
2 05/01/2017 28.0 NaN Snow
3 06/01/2017 NaN 7.0 NaN
4 07/01/2017 32.0 NaN Rain

Saving and loading models

The dataidea package offers saveModel and loadModel which allow you save and load your models while maintaining the programming priciples that we learn through the course. You can import saveModel and loadModel from the models module.

# dimporting the model
from sklearn.tree import DecisionTreeClassifier

# setting X and y
X = music_data.drop('genre', axis=1)
y = music_data.genre

# initializing and fitting the model
classifier = DecisionTreeClassifier()
classifier.fit(X, y)
<style>#sk-container-id-2 { /* Definition of color scheme common for light and dark mode */ --sklearn-color-text: black; --sklearn-color-line: gray; /* Definition of color scheme for unfitted estimators */ --sklearn-color-unfitted-level-0: #fff5e6; --sklearn-color-unfitted-level-1: #f6e4d2; --sklearn-color-unfitted-level-2: #ffe0b3; --sklearn-color-unfitted-level-3: chocolate; /* Definition of color scheme for fitted estimators */ --sklearn-color-fitted-level-0: #f0f8ff; --sklearn-color-fitted-level-1: #d4ebff; --sklearn-color-fitted-level-2: #b3dbfd; --sklearn-color-fitted-level-3: cornflowerblue; /* Specific color for light theme */ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black))); --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white))); --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black))); --sklearn-color-icon: #696969; @media (prefers-color-scheme: dark) { /* Redefinition of color scheme for dark theme */ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white))); --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111))); --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white))); --sklearn-color-icon: #878787; } } #sk-container-id-2 { color: var(--sklearn-color-text); } #sk-container-id-2 pre { padding: 0; } #sk-container-id-2 input.sk-hidden--visually { border: 0; clip: rect(1px 1px 1px 1px); clip: rect(1px, 1px, 1px, 1px); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px; } #sk-container-id-2 div.sk-dashed-wrapped { border: 1px dashed var(--sklearn-color-line); margin: 0 0.4em 0.5em 0.4em; box-sizing: border-box; padding-bottom: 0.4em; background-color: var(--sklearn-color-background); } #sk-container-id-2 div.sk-container { /* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */ display: inline-block !important; position: relative; } #sk-container-id-2 div.sk-text-repr-fallback { display: none; } div.sk-parallel-item, div.sk-serial, div.sk-item { /* draw centered vertical line to link estimators */ background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background)); background-size: 2px 100%; background-repeat: no-repeat; background-position: center center; } /* Parallel-specific style estimator block */ #sk-container-id-2 div.sk-parallel-item::after { content: ""; width: 100%; border-bottom: 2px solid var(--sklearn-color-text-on-default-background); flex-grow: 1; } #sk-container-id-2 div.sk-parallel { display: flex; align-items: stretch; justify-content: center; background-color: var(--sklearn-color-background); position: relative; } #sk-container-id-2 div.sk-parallel-item { display: flex; flex-direction: column; } #sk-container-id-2 div.sk-parallel-item:first-child::after { align-self: flex-end; width: 50%; } #sk-container-id-2 div.sk-parallel-item:last-child::after { align-self: flex-start; width: 50%; } #sk-container-id-2 div.sk-parallel-item:only-child::after { width: 0; } /* Serial-specific style estimator block */ #sk-container-id-2 div.sk-serial { display: flex; flex-direction: column; align-items: center; background-color: var(--sklearn-color-background); padding-right: 1em; padding-left: 1em; } /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is clickable and can be expanded/collapsed. - Pipeline and ColumnTransformer use this feature and define the default style - Estimators will overwrite some part of the style using the `sk-estimator` class */ /* Pipeline and ColumnTransformer style (default) */ #sk-container-id-2 div.sk-toggleable { /* Default theme specific background. It is overwritten whether we have a specific estimator or a Pipeline/ColumnTransformer */ background-color: var(--sklearn-color-background); } /* Toggleable label */ #sk-container-id-2 label.sk-toggleable__label { cursor: pointer; display: block; width: 100%; margin-bottom: 0; padding: 0.5em; box-sizing: border-box; text-align: center; } #sk-container-id-2 label.sk-toggleable__label-arrow:before { /* Arrow on the left of the label */ content: "▸"; float: left; margin-right: 0.25em; color: var(--sklearn-color-icon); } #sk-container-id-2 label.sk-toggleable__label-arrow:hover:before { color: var(--sklearn-color-text); } /* Toggleable content - dropdown */ #sk-container-id-2 div.sk-toggleable__content { max-height: 0; max-width: 0; overflow: hidden; text-align: left; /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-2 div.sk-toggleable__content.fitted { /* fitted */ background-color: var(--sklearn-color-fitted-level-0); } #sk-container-id-2 div.sk-toggleable__content pre { margin: 0.2em; border-radius: 0.25em; color: var(--sklearn-color-text); /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-2 div.sk-toggleable__content.fitted pre { /* unfitted */ background-color: var(--sklearn-color-fitted-level-0); } #sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content { /* Expand drop-down */ max-height: 200px; max-width: 100%; overflow: auto; } #sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before { content: "▾"; } /* Pipeline/ColumnTransformer-specific style */ #sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label { color: var(--sklearn-color-text); background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-2 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: var(--sklearn-color-fitted-level-2); } /* Estimator-specific style */ /* Colorize estimator box */ #sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-2 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label { /* fitted */ background-color: var(--sklearn-color-fitted-level-2); } #sk-container-id-2 div.sk-label label.sk-toggleable__label, #sk-container-id-2 div.sk-label label { /* The background is the default theme color */ color: var(--sklearn-color-text-on-default-background); } /* On hover, darken the color of the background */ #sk-container-id-2 div.sk-label:hover label.sk-toggleable__label { color: var(--sklearn-color-text); background-color: var(--sklearn-color-unfitted-level-2); } /* Label box, darken color on hover, fitted */ #sk-container-id-2 div.sk-label.fitted:hover label.sk-toggleable__label.fitted { color: var(--sklearn-color-text); background-color: var(--sklearn-color-fitted-level-2); } /* Estimator label */ #sk-container-id-2 div.sk-label label { font-family: monospace; font-weight: bold; display: inline-block; line-height: 1.2em; } #sk-container-id-2 div.sk-label-container { text-align: center; } /* Estimator-specific */ #sk-container-id-2 div.sk-estimator { font-family: monospace; border: 1px dotted var(--sklearn-color-border-box); border-radius: 0.25em; box-sizing: border-box; margin-bottom: 0.5em; /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-2 div.sk-estimator.fitted { /* fitted */ background-color: var(--sklearn-color-fitted-level-0); } /* on hover */ #sk-container-id-2 div.sk-estimator:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-2 div.sk-estimator.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-2); } /* Specification for estimator info (e.g. "i" and "?") */ /* Common style for "i" and "?" */ .sk-estimator-doc-link, a:link.sk-estimator-doc-link, a:visited.sk-estimator-doc-link { float: right; font-size: smaller; line-height: 1em; font-family: monospace; background-color: var(--sklearn-color-background); border-radius: 1em; height: 1em; width: 1em; text-decoration: none !important; margin-left: 1ex; /* unfitted */ border: var(--sklearn-color-unfitted-level-1) 1pt solid; color: var(--sklearn-color-unfitted-level-1); } .sk-estimator-doc-link.fitted, a:link.sk-estimator-doc-link.fitted, a:visited.sk-estimator-doc-link.fitted { /* fitted */ border: var(--sklearn-color-fitted-level-1) 1pt solid; color: var(--sklearn-color-fitted-level-1); } /* On hover */ div.sk-estimator:hover .sk-estimator-doc-link:hover, .sk-estimator-doc-link:hover, div.sk-label-container:hover .sk-estimator-doc-link:hover, .sk-estimator-doc-link:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover, .sk-estimator-doc-link.fitted:hover, div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover, .sk-estimator-doc-link.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } /* Span, style for the box shown on hovering the info icon */ .sk-estimator-doc-link span { display: none; z-index: 9999; position: relative; font-weight: normal; right: .2ex; padding: .5ex; margin: .5ex; width: min-content; min-width: 20ex; max-width: 50ex; color: var(--sklearn-color-text); box-shadow: 2pt 2pt 4pt #999; /* unfitted */ background: var(--sklearn-color-unfitted-level-0); border: .5pt solid var(--sklearn-color-unfitted-level-3); } .sk-estimator-doc-link.fitted span { /* fitted */ background: var(--sklearn-color-fitted-level-0); border: var(--sklearn-color-fitted-level-3); } .sk-estimator-doc-link:hover span { display: block; } /* "?"-specific style due to the `` HTML tag */ #sk-container-id-2 a.estimator_doc_link { float: right; font-size: 1rem; line-height: 1em; font-family: monospace; background-color: var(--sklearn-color-background); border-radius: 1rem; height: 1rem; width: 1rem; text-decoration: none; /* unfitted */ color: var(--sklearn-color-unfitted-level-1); border: var(--sklearn-color-unfitted-level-1) 1pt solid; } #sk-container-id-2 a.estimator_doc_link.fitted { /* fitted */ border: var(--sklearn-color-fitted-level-1) 1pt solid; color: var(--sklearn-color-fitted-level-1); } /* On hover */ #sk-container-id-2 a.estimator_doc_link:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } #sk-container-id-2 a.estimator_doc_link.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-3); } </style>

Now that we have trained our model, let's try saving and loading it, and use the loaded model for predictions

from dataidea.models import saveModel, loadModel

# saving the model
saveModel(model=classifier, filename='genre_classifier.di')

# loading the model
loaded_model = loadModel(filename='genre_classifier.di')
# predicting X
loaded_model.predict(X)
array(['HipHop', 'HipHop', 'HipHop', 'Jazz', 'Jazz', 'Jazz', 'Classical',
       'Classical', 'Classical', 'Dance', 'Dance', 'Dance', 'Acoustic',
       'Acoustic', 'Acoustic', 'Classical', 'Classical', 'Classical',
       'Classical', 'Classical'], dtype=object)

more to follow...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataidea-0.1.5.tar.gz (921.5 kB view details)

Uploaded Source

Built Distribution

dataidea-0.1.5-py3-none-any.whl (935.9 kB view details)

Uploaded Python 3

File details

Details for the file dataidea-0.1.5.tar.gz.

File metadata

  • Download URL: dataidea-0.1.5.tar.gz
  • Upload date:
  • Size: 921.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for dataidea-0.1.5.tar.gz
Algorithm Hash digest
SHA256 0a77d15c882ed1e2be154517a022724b51a1c863cf5ccee43877b017ec099e08
MD5 5827302ff28816451ad81324bdb46e9e
BLAKE2b-256 1dcce79ee057e903e010437d8291487603bae137b9cd748690d49605a8e96311

See more details on using hashes here.

File details

Details for the file dataidea-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: dataidea-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 935.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for dataidea-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 903a221f52a51d063a1e419d5359ec16b9dadd7de1caed14ef2bb3c5f043669c
MD5 17cd31d4e8f3ab23687fb7bd759416d6
BLAKE2b-256 e1f77e08c8223ef6be8399d9754f6a8761202cb16820ead20402328750e6a93b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page