Generate schema code from model definitions for both Python and MATLAB
Project description
datajoint-babel
Generate schema code from model definitions for both Python and MATLAB (and eventually vice versa).
Say you're a lab that uses both Python and MATLAB, this lets you declare your models once and then generate both Python and MATLAB versions of them, rather than having two potentially mutually contradictory sets of models. Keep explicit structure and avoid implicit model recreation from the database <3.
More generally a pythonic adapter interface from an explicit data model (thanks pydantic!) to datajoint models so other tools can patch in more easily!
So far just a single afternoon project, but will be the means by which autopilot interfaces directly with datajoint :)
Example
Source a model from a string
>>> from datajoint_babel.model import Table
>>> from pprint import pprint
>>> tab = Table.from_definition(name='User', tier='Manual', definition="""
# database users
username : varchar(20) # unique user name
---
first_name : varchar(30)
last_name : varchar(30)
role : enum('admin', 'contributor', 'viewer')
"""
)
>>> tab.dict()
{'name': 'User',
'tier': 'Manual',
'comment': {'comment': 'database users'},
'keys': [{'name': 'username',
'datatype': {'datatype': 'varchar', 'args': 20, 'unsigned': False},
'comment': 'unique user name',
'default': None}],
'attributes': [{'name': 'first_name',
'datatype': {'datatype': 'varchar', 'args': 30, 'unsigned': False},
'comment': '',
'default': None},
{'name': 'last_name',
'datatype': {'datatype': 'varchar', 'args': 30, 'unsigned': False},
'comment': '',
'default': None},
{'name': 'role',
'datatype': {'datatype': 'enum',
'args': ["'admin'", " 'contributor'", " 'viewer'"],
'unsigned': False},
'comment': '',
'default': None}]}
>>> pprint(tab.__dict__)
{'attributes': [Attribute(name='first_name', datatype=DJ_Type(datatype='varchar', args=30, unsigned=False), comment='', default=None),
Attribute(name='last_name', datatype=DJ_Type(datatype='varchar', args=30, unsigned=False), comment='', default=None),
Attribute(name='role', datatype=DJ_Type(datatype='enum', args=["'admin'", " 'contributor'", " 'viewer'"], unsigned=False), comment='', default=None)],
'comment': Comment(comment='database users'),
'keys': [Attribute(name='username', datatype=DJ_Type(datatype='varchar', args=20, unsigned=False), comment='unique user name', default=None)],
'name': 'User',
'tier': 'Manual'}
Export to python...
>>> print(tab.make(lang='python'))
@schema
class User(dj.Manual):
definition = """
# database users
username : varchar(20) # unique user name
---
first_name : varchar(30)
last_name : varchar(30)
role : enum('admin', 'contributor', 'viewer')
And to MATLAB
>>> print(tab.make(lang='matlab'))
%{
# # database users
# username : varchar(20) # unique user name
---
# first_name : varchar(30)
# last_name : varchar(30)
# role : enum('admin', 'contributor', 'viewer')
%}
classdef User < dj.Manual
end
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for datajoint_babel-0.1.9-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ab29a49d19acca43b5b57f8a85c489adbbf629e626f3fa4df653efac36b8e70 |
|
MD5 | d9fcbec0c14fc7a16b516634ae9fed5f |
|
BLAKE2b-256 | 3a4aea03e4717d119be47048bc0759bea1cac0d2166acfe0b2cd0b73cd24c5eb |