Skip to main content

OSS Implementation of a DataJunction Query Service

Project description

DataJunction Query Service

This repository (DJQS) is an open source implementation of a DataJunction query service. It allows you to create catalogs and engines that represent sqlalchemy connections. Configuring a DJ server to use a DJQS server allows DJ to query any of the database technologies supported by sqlalchemy.

Quickstart

To get started, clone this repo and start up the docker compose environment.

git clone https://github.com/DataJunction/djqs
cd djqs
docker compose up

Creating Catalogs

Catalogs can be created using the POST /catalogs/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djdb"
}'

Creating Engines

Engines can be created using the POST /engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "sqlalchemy-postgresql",
  "version": "15.2",
  "uri": "postgresql://dj:dj@postgres-roads:5432/djdb"
}'

Engines can be attached to existing catalogs using the POST /catalogs/{name}/engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/djdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "sqlalchemy-postgresql",
    "version": "15.2"
  }
]'

Executing Queries

Queries can be submitted to DJQS for a specified catalog and engine.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": false
}'

Async queries can be submitted as well.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": true
}'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "<QUERY ID HERE>",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": null,
  "scheduled": null,
  "started": null,
  "finished": null,
  "state": "ACCEPTED",
  "progress": 0,
  "results": [],
  "next": null,
  "previous": null,
  "errors": []
}

The query id provided in the response can then be used to check the status of the running query and get the results once it’s completed.

curl -X 'GET' \
  'http://localhost:8001/queries/<QUERY ID HERE>/' \
  -H 'accept: application/json'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "$QUERY_ID",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": "SELECT * from roads.repair_orders",
  "scheduled": "2023-02-28T07:27:55.367162",
  "started": "2023-02-28T07:27:55.367387",
  "finished": "2023-02-28T07:27:55.502412",
  "state": "FINISHED",
  "progress": 1,
  "results": [
    {
      "sql": "SELECT * from roads.repair_orders",
      "columns": [...],
      "rows": [...],
      "row_count": 25
    }
  ],
  "next": null,
  "previous": null,
  "errors": []
}

Reflection

If running a [reflection service](https://github.com/DataJunction/djrs), that service can leverage the POST /table/{table}/columns/ endpoint of DJQS to get column names and types for a given table.

curl -X 'GET' \
  'http://localhost:8001/table/djdb.roads.repair_orders/columns/?engine=sqlalchemy-postgresql&engine_version=15.2' \
  -H 'accept: application/json'

response

{
  "name": "djdb.roads.repair_orders",
  "columns": [
    {
      "name": "repair_order_id",
      "type": "INT"
    },
    {
      "name": "municipality_id",
      "type": "STR"
    },
    {
      "name": "hard_hat_id",
      "type": "INT"
    },
    {
      "name": "order_date",
      "type": "DATE"
    },
    {
      "name": "required_date",
      "type": "DATE"
    },
    {
      "name": "dispatched_date",
      "type": "DATE"
    },
    {
      "name": "dispatcher_id",
      "type": "INT"
    }
  ]
}

DuckDB

DJQS includes an example of using DuckDB as an engine and it comes preloaded with the roads example database.

Create a djduckdb catalog and a duckdb engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djduckdb"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "duckdb",
  "version": "0.7.1",
  "uri": "duckdb://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djduckdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "duckdb",
    "version": "0.7.1"
  }
]'

Now you can submit DuckDB SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djduckdb",
  "engine_name": "duckdb",
  "engine_version": "0.7.1",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Spark

DJQS includes an example of using Spark as an engine. To try it, start up the docker compose environment and then load the example roads database into Spark.

docker exec -it djqs /bin/bash -c "python /code/docker/spark_load_roads.py"

Next, create a djspark catalog and a spark engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djspark"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "spark",
  "version": "3.3.2",
  "uri": "spark://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djspark/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "spark",
    "version": "3.3.2"
  }
]'

Now you can submit Spark SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djspark",
  "engine_name": "spark",
  "engine_version": "3.3.2",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datajunction_query-0.0.1a57.tar.gz (152.3 kB view details)

Uploaded Source

Built Distribution

datajunction_query-0.0.1a57-py3-none-any.whl (23.8 kB view details)

Uploaded Python 3

File details

Details for the file datajunction_query-0.0.1a57.tar.gz.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a57.tar.gz
Algorithm Hash digest
SHA256 48e9565ce820ba1b7c84c34f5ae37a2b12c70a778c1c9f7720ad9cee3b509f8c
MD5 ca35ed54a0d360e018fe77e47d67a1ff
BLAKE2b-256 a204844446927363b0c4875fdc4070fa45ae6dcf204c28ecaaa98ae83a39370a

See more details on using hashes here.

File details

Details for the file datajunction_query-0.0.1a57-py3-none-any.whl.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a57-py3-none-any.whl
Algorithm Hash digest
SHA256 80df3353ea621aab0a8f26a5ac508f22d490ca566fcc71c01b26b10134e0fd38
MD5 cc5d4b37722f52403f74b4d5018c5a47
BLAKE2b-256 dd19c6e62b243f4cccc43b3eb233fd88b36a4088d255f6abb335ab433fe77187

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page