Skip to main content

OSS Implementation of a DataJunction Query Service

Project description

DataJunction Query Service

This repository (DJQS) is an open source implementation of a DataJunction query service. It allows you to create catalogs and engines that represent sqlalchemy connections. Configuring a DJ server to use a DJQS server allows DJ to query any of the database technologies supported by sqlalchemy.

Quickstart

To get started, clone this repo and start up the docker compose environment.

git clone https://github.com/DataJunction/djqs
cd djqs
docker compose up

Creating Catalogs

Catalogs can be created using the POST /catalogs/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djdb"
}'

Creating Engines

Engines can be created using the POST /engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "sqlalchemy-postgresql",
  "version": "15.2",
  "uri": "postgresql://dj:dj@postgres-roads:5432/djdb"
}'

Engines can be attached to existing catalogs using the POST /catalogs/{name}/engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/djdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "sqlalchemy-postgresql",
    "version": "15.2"
  }
]'

Executing Queries

Queries can be submitted to DJQS for a specified catalog and engine.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": false
}'

Async queries can be submitted as well.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": true
}'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "<QUERY ID HERE>",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": null,
  "scheduled": null,
  "started": null,
  "finished": null,
  "state": "ACCEPTED",
  "progress": 0,
  "results": [],
  "next": null,
  "previous": null,
  "errors": []
}

The query id provided in the response can then be used to check the status of the running query and get the results once it’s completed.

curl -X 'GET' \
  'http://localhost:8001/queries/<QUERY ID HERE>/' \
  -H 'accept: application/json'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "$QUERY_ID",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": "SELECT * from roads.repair_orders",
  "scheduled": "2023-02-28T07:27:55.367162",
  "started": "2023-02-28T07:27:55.367387",
  "finished": "2023-02-28T07:27:55.502412",
  "state": "FINISHED",
  "progress": 1,
  "results": [
    {
      "sql": "SELECT * from roads.repair_orders",
      "columns": [...],
      "rows": [...],
      "row_count": 25
    }
  ],
  "next": null,
  "previous": null,
  "errors": []
}

Reflection

If running a [reflection service](https://github.com/DataJunction/djrs), that service can leverage the POST /table/{table}/columns/ endpoint of DJQS to get column names and types for a given table.

curl -X 'GET' \
  'http://localhost:8001/table/djdb.roads.repair_orders/columns/?engine=sqlalchemy-postgresql&engine_version=15.2' \
  -H 'accept: application/json'

response

{
  "name": "djdb.roads.repair_orders",
  "columns": [
    {
      "name": "repair_order_id",
      "type": "INT"
    },
    {
      "name": "municipality_id",
      "type": "STR"
    },
    {
      "name": "hard_hat_id",
      "type": "INT"
    },
    {
      "name": "order_date",
      "type": "DATE"
    },
    {
      "name": "required_date",
      "type": "DATE"
    },
    {
      "name": "dispatched_date",
      "type": "DATE"
    },
    {
      "name": "dispatcher_id",
      "type": "INT"
    }
  ]
}

DuckDB

DJQS includes an example of using DuckDB as an engine and it comes preloaded with the roads example database.

Create a djduckdb catalog and a duckdb engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djduckdb"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "duckdb",
  "version": "0.7.1",
  "uri": "duckdb://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djduckdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "duckdb",
    "version": "0.7.1"
  }
]'

Now you can submit DuckDB SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djduckdb",
  "engine_name": "duckdb",
  "engine_version": "0.7.1",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Spark

DJQS includes an example of using Spark as an engine. To try it, start up the docker compose environment and then load the example roads database into Spark.

docker exec -it djqs /bin/bash -c "python /code/docker/spark_load_roads.py"

Next, create a djspark catalog and a spark engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djspark"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "spark",
  "version": "3.3.2",
  "uri": "spark://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djspark/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "spark",
    "version": "3.3.2"
  }
]'

Now you can submit Spark SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djspark",
  "engine_name": "spark",
  "engine_version": "3.3.2",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datajunction_query-0.0.1a58.tar.gz (162.1 kB view details)

Uploaded Source

Built Distribution

datajunction_query-0.0.1a58-py3-none-any.whl (24.0 kB view details)

Uploaded Python 3

File details

Details for the file datajunction_query-0.0.1a58.tar.gz.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a58.tar.gz
Algorithm Hash digest
SHA256 04ab7e3d986b9cfbbadd94957e1b81cd2ff675af65a92373a374ca87a8de8a6e
MD5 35e56b1a5e00ad5eae26097dab87d53a
BLAKE2b-256 7f805254dec72b969a93291f9315abfe54c5cd7bfdc1a2e66a87b5718b7ba14e

See more details on using hashes here.

File details

Details for the file datajunction_query-0.0.1a58-py3-none-any.whl.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a58-py3-none-any.whl
Algorithm Hash digest
SHA256 8962c606b9f79c5a4bd5549e8a8656fd5a455d459e4b6da941b3951fa672f987
MD5 5e9c9435724742ffadaadbe6f72ddd5e
BLAKE2b-256 a9314f21362cfc701ddc29c4384d00f8608de3509800332438e83c31598110b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page