Skip to main content

OSS Implementation of a DataJunction Query Service

Project description

DataJunction Query Service

This repository (DJQS) is an open source implementation of a DataJunction query service. It allows you to create catalogs and engines that represent sqlalchemy connections. Configuring a DJ server to use a DJQS server allows DJ to query any of the database technologies supported by sqlalchemy.

Quickstart

To get started, clone this repo and start up the docker compose environment.

git clone https://github.com/DataJunction/djqs
cd djqs
docker compose up

Creating Catalogs

Catalogs can be created using the POST /catalogs/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djdb"
}'

Creating Engines

Engines can be created using the POST /engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "sqlalchemy-postgresql",
  "version": "15.2",
  "uri": "postgresql://dj:dj@postgres-roads:5432/djdb"
}'

Engines can be attached to existing catalogs using the POST /catalogs/{name}/engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/djdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "sqlalchemy-postgresql",
    "version": "15.2"
  }
]'

Executing Queries

Queries can be submitted to DJQS for a specified catalog and engine.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": false
}'

Async queries can be submitted as well.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": true
}'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "<QUERY ID HERE>",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": null,
  "scheduled": null,
  "started": null,
  "finished": null,
  "state": "ACCEPTED",
  "progress": 0,
  "results": [],
  "next": null,
  "previous": null,
  "errors": []
}

The query id provided in the response can then be used to check the status of the running query and get the results once it’s completed.

curl -X 'GET' \
  'http://localhost:8001/queries/<QUERY ID HERE>/' \
  -H 'accept: application/json'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "$QUERY_ID",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": "SELECT * from roads.repair_orders",
  "scheduled": "2023-02-28T07:27:55.367162",
  "started": "2023-02-28T07:27:55.367387",
  "finished": "2023-02-28T07:27:55.502412",
  "state": "FINISHED",
  "progress": 1,
  "results": [
    {
      "sql": "SELECT * from roads.repair_orders",
      "columns": [...],
      "rows": [...],
      "row_count": 25
    }
  ],
  "next": null,
  "previous": null,
  "errors": []
}

Reflection

If running a [reflection service](https://github.com/DataJunction/djrs), that service can leverage the POST /table/{table}/columns/ endpoint of DJQS to get column names and types for a given table.

curl -X 'GET' \
  'http://localhost:8001/table/djdb.roads.repair_orders/columns/?engine=sqlalchemy-postgresql&engine_version=15.2' \
  -H 'accept: application/json'

response

{
  "name": "djdb.roads.repair_orders",
  "columns": [
    {
      "name": "repair_order_id",
      "type": "INT"
    },
    {
      "name": "municipality_id",
      "type": "STR"
    },
    {
      "name": "hard_hat_id",
      "type": "INT"
    },
    {
      "name": "order_date",
      "type": "DATE"
    },
    {
      "name": "required_date",
      "type": "DATE"
    },
    {
      "name": "dispatched_date",
      "type": "DATE"
    },
    {
      "name": "dispatcher_id",
      "type": "INT"
    }
  ]
}

DuckDB

DJQS includes an example of using DuckDB as an engine and it comes preloaded with the roads example database.

Create a djduckdb catalog and a duckdb engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djduckdb"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "duckdb",
  "version": "0.7.1",
  "uri": "duckdb://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djduckdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "duckdb",
    "version": "0.7.1"
  }
]'

Now you can submit DuckDB SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djduckdb",
  "engine_name": "duckdb",
  "engine_version": "0.7.1",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Spark

DJQS includes an example of using Spark as an engine. To try it, start up the docker compose environment and then load the example roads database into Spark.

docker exec -it djqs /bin/bash -c "python /code/docker/spark_load_roads.py"

Next, create a djspark catalog and a spark engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djspark"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "spark",
  "version": "3.3.2",
  "uri": "spark://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djspark/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "spark",
    "version": "3.3.2"
  }
]'

Now you can submit Spark SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djspark",
  "engine_name": "spark",
  "engine_version": "3.3.2",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datajunction_query-0.0.1a61.tar.gz (162.1 kB view details)

Uploaded Source

Built Distribution

datajunction_query-0.0.1a61-py3-none-any.whl (24.0 kB view details)

Uploaded Python 3

File details

Details for the file datajunction_query-0.0.1a61.tar.gz.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a61.tar.gz
Algorithm Hash digest
SHA256 1cae327cf8e8d6a3204323fe474c97b560ec77cca8adb43a0ac403379d04d24e
MD5 046a9e54062a1fbb2485e5049b796d12
BLAKE2b-256 9f179a7e0785e60fdebd61ff623276e19110062aa55909fc5733cb1413528131

See more details on using hashes here.

File details

Details for the file datajunction_query-0.0.1a61-py3-none-any.whl.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a61-py3-none-any.whl
Algorithm Hash digest
SHA256 9784997767e7758c7f5f9290c52d3e5637b315f1ed4ac29ac2445c684c37c089
MD5 1a021cbdc4fe9f0ba938deeade1c6fb7
BLAKE2b-256 f88e8608150541c4d78440284f66f5c5bc66ef3ad1c636270e8ec10768b7bdd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page