Skip to main content

OSS Implementation of a DataJunction Query Service

Project description

DataJunction Query Service

This repository (DJQS) is an open source implementation of a DataJunction query service. It allows you to create catalogs and engines that represent sqlalchemy connections. Configuring a DJ server to use a DJQS server allows DJ to query any of the database technologies supported by sqlalchemy.

Quickstart

To get started, clone this repo and start up the docker compose environment.

git clone https://github.com/DataJunction/djqs
cd djqs
docker compose up

Creating Catalogs

Catalogs can be created using the POST /catalogs/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djdb"
}'

Creating Engines

Engines can be created using the POST /engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "sqlalchemy-postgresql",
  "version": "15.2",
  "uri": "postgresql://dj:dj@postgres-roads:5432/djdb"
}'

Engines can be attached to existing catalogs using the POST /catalogs/{name}/engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/djdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "sqlalchemy-postgresql",
    "version": "15.2"
  }
]'

Executing Queries

Queries can be submitted to DJQS for a specified catalog and engine.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": false
}'

Async queries can be submitted as well.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": true
}'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "<QUERY ID HERE>",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": null,
  "scheduled": null,
  "started": null,
  "finished": null,
  "state": "ACCEPTED",
  "progress": 0,
  "results": [],
  "next": null,
  "previous": null,
  "errors": []
}

The query id provided in the response can then be used to check the status of the running query and get the results once it’s completed.

curl -X 'GET' \
  'http://localhost:8001/queries/<QUERY ID HERE>/' \
  -H 'accept: application/json'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "$QUERY_ID",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": "SELECT * from roads.repair_orders",
  "scheduled": "2023-02-28T07:27:55.367162",
  "started": "2023-02-28T07:27:55.367387",
  "finished": "2023-02-28T07:27:55.502412",
  "state": "FINISHED",
  "progress": 1,
  "results": [
    {
      "sql": "SELECT * from roads.repair_orders",
      "columns": [...],
      "rows": [...],
      "row_count": 25
    }
  ],
  "next": null,
  "previous": null,
  "errors": []
}

Reflection

If running a [reflection service](https://github.com/DataJunction/djrs), that service can leverage the POST /table/{table}/columns/ endpoint of DJQS to get column names and types for a given table.

curl -X 'GET' \
  'http://localhost:8001/table/djdb.roads.repair_orders/columns/?engine=sqlalchemy-postgresql&engine_version=15.2' \
  -H 'accept: application/json'

response

{
  "name": "djdb.roads.repair_orders",
  "columns": [
    {
      "name": "repair_order_id",
      "type": "INT"
    },
    {
      "name": "municipality_id",
      "type": "STR"
    },
    {
      "name": "hard_hat_id",
      "type": "INT"
    },
    {
      "name": "order_date",
      "type": "DATE"
    },
    {
      "name": "required_date",
      "type": "DATE"
    },
    {
      "name": "dispatched_date",
      "type": "DATE"
    },
    {
      "name": "dispatcher_id",
      "type": "INT"
    }
  ]
}

DuckDB

DJQS includes an example of using DuckDB as an engine and it comes preloaded with the roads example database.

Create a djduckdb catalog and a duckdb engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djduckdb"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "duckdb",
  "version": "0.7.1",
  "uri": "duckdb://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djduckdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "duckdb",
    "version": "0.7.1"
  }
]'

Now you can submit DuckDB SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djduckdb",
  "engine_name": "duckdb",
  "engine_version": "0.7.1",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Spark

DJQS includes an example of using Spark as an engine. To try it, start up the docker compose environment and then load the example roads database into Spark.

docker exec -it djqs /bin/bash -c "python /code/docker/spark_load_roads.py"

Next, create a djspark catalog and a spark engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djspark"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "spark",
  "version": "3.3.2",
  "uri": "spark://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djspark/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "spark",
    "version": "3.3.2"
  }
]'

Now you can submit Spark SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djspark",
  "engine_name": "spark",
  "engine_version": "3.3.2",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datajunction_query-0.0.1a67.tar.gz (140.5 kB view details)

Uploaded Source

Built Distribution

datajunction_query-0.0.1a67-py3-none-any.whl (23.1 kB view details)

Uploaded Python 3

File details

Details for the file datajunction_query-0.0.1a67.tar.gz.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a67.tar.gz
Algorithm Hash digest
SHA256 beb7b8d74c45bd053726d35c6b5a2f0fe398c97a52457fdefc60a0af5ba43ff5
MD5 1e4831c408a7e1aaa2d20b8914bc611d
BLAKE2b-256 970957cb750219037603bc2857eaa43a48988f6d5294f751f16b1a4931948c52

See more details on using hashes here.

File details

Details for the file datajunction_query-0.0.1a67-py3-none-any.whl.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a67-py3-none-any.whl
Algorithm Hash digest
SHA256 de776e85061ebeb818cf0eaec528de25648f8601f292f31354c8e110185edc80
MD5 a010fbd74d00152e28ae55c10fc6b2d2
BLAKE2b-256 460a83ef07f6526745458bb4ed0913b1cdf31c7bcc268391c591c01feeb0da9b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page