Skip to main content

OSS Implementation of a DataJunction Query Service

Project description

DataJunction Query Service

This repository (DJQS) is an open source implementation of a DataJunction query service. It allows you to create catalogs and engines that represent sqlalchemy connections. Configuring a DJ server to use a DJQS server allows DJ to query any of the database technologies supported by sqlalchemy.

Quickstart

To get started, clone this repo and start up the docker compose environment.

git clone https://github.com/DataJunction/djqs
cd djqs
docker compose up

Creating Catalogs

Catalogs can be created using the POST /catalogs/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djdb"
}'

Creating Engines

Engines can be created using the POST /engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "sqlalchemy-postgresql",
  "version": "15.2",
  "uri": "postgresql://dj:dj@postgres-roads:5432/djdb"
}'

Engines can be attached to existing catalogs using the POST /catalogs/{name}/engines/ endpoint.

curl -X 'POST' \
  'http://localhost:8001/catalogs/djdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "sqlalchemy-postgresql",
    "version": "15.2"
  }
]'

Executing Queries

Queries can be submitted to DJQS for a specified catalog and engine.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": false
}'

Async queries can be submitted as well.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "submitted_query": "SELECT * from roads.repair_orders",
  "async_": true
}'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "<QUERY ID HERE>",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": null,
  "scheduled": null,
  "started": null,
  "finished": null,
  "state": "ACCEPTED",
  "progress": 0,
  "results": [],
  "next": null,
  "previous": null,
  "errors": []
}

The query id provided in the response can then be used to check the status of the running query and get the results once it’s completed.

curl -X 'GET' \
  'http://localhost:8001/queries/<QUERY ID HERE>/' \
  -H 'accept: application/json'

response

{
  "catalog_name": "djdb",
  "engine_name": "sqlalchemy-postgresql",
  "engine_version": "15.2",
  "id": "$QUERY_ID",
  "submitted_query": "SELECT * from roads.repair_orders",
  "executed_query": "SELECT * from roads.repair_orders",
  "scheduled": "2023-02-28T07:27:55.367162",
  "started": "2023-02-28T07:27:55.367387",
  "finished": "2023-02-28T07:27:55.502412",
  "state": "FINISHED",
  "progress": 1,
  "results": [
    {
      "sql": "SELECT * from roads.repair_orders",
      "columns": [...],
      "rows": [...],
      "row_count": 25
    }
  ],
  "next": null,
  "previous": null,
  "errors": []
}

Reflection

If running a [reflection service](https://github.com/DataJunction/djrs), that service can leverage the POST /table/{table}/columns/ endpoint of DJQS to get column names and types for a given table.

curl -X 'GET' \
  'http://localhost:8001/table/djdb.roads.repair_orders/columns/?engine=sqlalchemy-postgresql&engine_version=15.2' \
  -H 'accept: application/json'

response

{
  "name": "djdb.roads.repair_orders",
  "columns": [
    {
      "name": "repair_order_id",
      "type": "INT"
    },
    {
      "name": "municipality_id",
      "type": "STR"
    },
    {
      "name": "hard_hat_id",
      "type": "INT"
    },
    {
      "name": "order_date",
      "type": "DATE"
    },
    {
      "name": "required_date",
      "type": "DATE"
    },
    {
      "name": "dispatched_date",
      "type": "DATE"
    },
    {
      "name": "dispatcher_id",
      "type": "INT"
    }
  ]
}

DuckDB

DJQS includes an example of using DuckDB as an engine and it comes preloaded with the roads example database.

Create a djduckdb catalog and a duckdb engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djduckdb"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "duckdb",
  "version": "0.7.1",
  "uri": "duckdb://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djduckdb/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "duckdb",
    "version": "0.7.1"
  }
]'

Now you can submit DuckDB SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djduckdb",
  "engine_name": "duckdb",
  "engine_version": "0.7.1",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Spark

DJQS includes an example of using Spark as an engine. To try it, start up the docker compose environment and then load the example roads database into Spark.

docker exec -it djqs /bin/bash -c "python /code/docker/spark_load_roads.py"

Next, create a djspark catalog and a spark engine.

curl -X 'POST' \
  'http://localhost:8001/catalogs/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "djspark"
}'
curl -X 'POST' \
  'http://localhost:8001/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "spark",
  "version": "3.3.2",
  "uri": "spark://local[*]"
}'
curl -X 'POST' \
  'http://localhost:8001/catalogs/djspark/engines/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[
  {
    "name": "spark",
    "version": "3.3.2"
  }
]'

Now you can submit Spark SQL queries.

curl -X 'POST' \
  'http://localhost:8001/queries/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "catalog_name": "djspark",
  "engine_name": "spark",
  "engine_version": "3.3.2",
  "submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
  "async_": false
}'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datajunction_query-0.0.1a73.tar.gz (140.5 kB view details)

Uploaded Source

Built Distribution

datajunction_query-0.0.1a73-py3-none-any.whl (23.1 kB view details)

Uploaded Python 3

File details

Details for the file datajunction_query-0.0.1a73.tar.gz.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a73.tar.gz
Algorithm Hash digest
SHA256 de6c24b9571716134ead4c2aa7e58a812d6a5a46a758f2ae6356e6df8b98ebba
MD5 4b27c92057776263cd7dfd6401e2418c
BLAKE2b-256 5a8897ba91a6b1790b396495c070dde4dfdb243ea51ba5aafb2a7e6a7acebe47

See more details on using hashes here.

File details

Details for the file datajunction_query-0.0.1a73-py3-none-any.whl.

File metadata

File hashes

Hashes for datajunction_query-0.0.1a73-py3-none-any.whl
Algorithm Hash digest
SHA256 919fb6b52eb7ebeb4c83cd8e2627a136929653f82272a1ecacc4b3ed2a859493
MD5 5210f117f78b45577743d5e236d9f338
BLAKE2b-256 b14a164a514e414d5e4f152c335feebd653ef6b61a3c441c1d5c28ed5cc147ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page