Skip to main content

Python client for DataLLM server

Project description

DataLLM Client

Installation

pip install datallm

Enrich a DataFrame

import pandas as pd
from datallm import DataLLM

datallm = DataLLM(api_key='INSERT_API_KEY')

df = pd.DataFrame({
    "age in years": [5, 10, 13, 19, 30, 40, 50, 60, 70, 80],
    "gender": ["m", "f", "m", "f", "m", "f", "m", "f", "m", "f"],
    "country code": ["AT", "DE", "FR", "IT", "ES", "PT", "GR", "UK", "SE", "FI"],
})

# enrich the DataFrame with a new column containing the official country name
df["country"] = datallm.enrich(df, prompt="official name of the country")

# enrich the DataFrame with first name and last name
df["first name"] = datallm.enrich(df, prompt="the first name of that person")
df["last name"] = datallm.enrich(df, prompt="the last name of that person")

# enrich the DataFrame with a categorical
df["age group"] = datallm.enrich(
    df, prompt="age group", categories=["kid", "teen", "adult", "elderly"]
)

# enrich with a boolean value and a integer value
df["isMale"] = datallm.enrich(df, prompt="is Male?", dtype="boolean")
df["income"] = datallm.enrich(df, prompt="annual income in EUR", dtype="integer")

print(df)

Create a DataFrame from Scratch

import pandas as pd
from datallm import DataLLM

datallm = DataLLM(api_key='INSERT_API_KEY')
df = datallm.mock(
    n=10,
    data_description="Members of the Austrian ski team",
    columns={
        "full name": {
            "prompt": "the full name of the person",
        },
        "age in years": {
            "dtype": "integer",
        },
        "body weight": {
            "prompt": "the body weight in kg",
            "dtype": "integer",
        },
        "body height": {
            "prompt": "the body height in cm",
            "dtype": "integer",
        },
        "gender": {
            "categories": ["male", "female"],
        }
    }
)

print(df)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datallm-0.2.0.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

datallm-0.2.0-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file datallm-0.2.0.tar.gz.

File metadata

  • Download URL: datallm-0.2.0.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.7

File hashes

Hashes for datallm-0.2.0.tar.gz
Algorithm Hash digest
SHA256 4ce4d7ca95799ae6e62073a12894353929bfc549f18ae41f90e4c63977000d98
MD5 4c0ea3740494455815f9adf7ab9824f0
BLAKE2b-256 a8a04132b8e05960e4d0fe695f6c04088bed8e1a54db1ffe33a6b8dd580ba30a

See more details on using hashes here.

File details

Details for the file datallm-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: datallm-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.7

File hashes

Hashes for datallm-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bee85f477f54116a1de451ba5b3863faa92046766d26bfcd7382b35b3c7c5de8
MD5 76c94c3f8d6e48567b972a956205857f
BLAKE2b-256 ed84da1ee9dbb488f4f686b000c86ab9fb2e387b2b8ea17a904b459800f23931

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page