Skip to main content

Python client for DataLLM server

Project description

DataLLM Client

Installation

pip install datallm

Enrich a DataFrame

import pandas as pd
from datallm import DataLLM

datallm = DataLLM(api_key='INSERT_API_KEY')

df = pd.DataFrame({
    "age in years": [5, 10, 13, 19, 30, 40, 50, 60, 70, 80],
    "gender": ["m", "f", "m", "f", "m", "f", "m", "f", "m", "f"],
    "country code": ["AT", "DE", "FR", "IT", "ES", "PT", "GR", "UK", "SE", "FI"],
})

# enrich the DataFrame with a new column containing the official country name
df["country"] = datallm.enrich(df, prompt="official name of the country")

# enrich the DataFrame with first name and last name
df["first name"] = datallm.enrich(df, prompt="the first name of that person")
df["last name"] = datallm.enrich(df, prompt="the last name of that person")

# enrich the DataFrame with a categorical
df["age group"] = datallm.enrich(
    df, prompt="age group", categories=["kid", "teen", "adult", "elderly"]
)

# enrich with a boolean value and a integer value
df["isMale"] = datallm.enrich(df, prompt="is Male?", dtype="boolean")
df["income"] = datallm.enrich(df, prompt="annual income in EUR", dtype="integer")

print(df)

Create a DataFrame from Scratch

import pandas as pd
from datallm import DataLLM

datallm = DataLLM(api_key='INSERT_API_KEY')
df = datallm.mock(
    n=10,
    data_description="Members of the Austrian ski team",
    columns={
        "full name": {
            "prompt": "the full name of the person",
        },
        "age in years": {
            "dtype": "integer",
        },
        "body weight": {
            "prompt": "the body weight in kg",
            "dtype": "integer",
        },
        "body height": {
            "prompt": "the body height in cm",
            "dtype": "integer",
        },
        "gender": {
            "categories": ["male", "female"],
        }
    }
)

print(df)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datallm-0.2.1.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

datallm-0.2.1-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file datallm-0.2.1.tar.gz.

File metadata

  • Download URL: datallm-0.2.1.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.7

File hashes

Hashes for datallm-0.2.1.tar.gz
Algorithm Hash digest
SHA256 e47f7dee9927d17b167991c21795de3edb29bd723087a98609c32fd4e02a2b85
MD5 793049714043b5a16b0483f4c3ebec42
BLAKE2b-256 76b6c328feff5255e39d9596e881d234f88c2bf306717a6cd7bf44556e09b130

See more details on using hashes here.

File details

Details for the file datallm-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: datallm-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.7

File hashes

Hashes for datallm-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 91ce07af5520b2ec74ce27dc202d47386ddaecb0eac391342ae7604483f37254
MD5 79566cfd5fd1340b7034126c9d51121c
BLAKE2b-256 994ae06f0b5f02245c100618124d8d3bf826e3edba8a06012f0d5700412c0ee0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page