Dataloader for PyTorch
Project description
Dataloader
A python module for loading datasets from
- Scikit-learn
- Torchvision
It supports loading
- Wine
- Iris
- MNIST datasets
Defaults to loading IRIS.
This module also performs pre-processing relevant to each data set type. It handles categorical data for tabular sets like Iris and it performs transforms for images in the computer vision dataset like MNIST.
Install
Using a package manager
$ poetry add dataloader-fetcher
Example usage
fetcher = DataloaderFetcher()
train_loader = fetcher.train_loader(name="Iris")
test_loader = fetcher.test_loader(name="Iris")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for dataloader_fetcher-0.0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 068032dc8878c8022353710132fad80149f648358fa0185340b3da2ae7773dbf |
|
MD5 | 1da47c9c28e77e92c4d40ddd0a22fcb8 |
|
BLAKE2b-256 | 611fb799db165699236ac3d8afa962e9bea0baf3db6810ce2455c458d50285ca |