Skip to main content

Contains multiple functions stats(), iv_woe(), pushdb(), teams_webhook(), and ntfy()

Project description

DataNerd

This package provides various functions for data analysis, statistical calculations, database operations, and sending notifications.

Installation

To use these functions, you need to have Python installed on your system. You also need to install the required libraries. You can install them using pip:

pip install pandas numpy sqlalchemy requests

Functions

1. stats()

This function provides statistical summary of a given dataframe.

Parameters:

  • df (pandas.DataFrame): The input dataframe

Returns:

  • A dataframe containing various statistics for each column

Statistics provided:

  • count
  • mean
  • std
  • min
  • 10th, 20th, 25th, 30th, 40th, 50th (median), 60th, 70th, 75th, 80th, 90th, 95th, 99th percentiles
  • max
  • % of missing values
  • number of unique values

Usage:

import pandas as pd
import datanerd as dn

df = pd.read_csv('titanic.csv')
summary_stats = dn.stats(df)

2. iv_woe()

This function calculates the Weight of Evidence (WoE) and Information Value (IV) for a given dataframe.

Parameters:

  • data (pandas.DataFrame): The input dataframe
  • target (str): The name of the target variable
  • bins (int): The number of bins to use for discretizing continuous variables
  • optimize (bool): Whether to optimize the binning of continuous variables
  • threshold (float): The minimum percentage of non-events in each bin for optimization

Returns:

  • A tuple containing two dataframes: (iv, woe)

Usage:

import pandas as pd
import datanerd as dn

df = pd.read_csv('cancer.csv')
iv, woe = dn.iv_woe(data=df, target='Diagnosis', bins=20, optimize=True, threshold=0.05)

3. pushdb()

This function pushes a Pandas dataframe to a Microsoft SQL Server database.

Parameters:

  • data (pandas.DataFrame): The dataframe to be pushed
  • tablename (str): The name of the table in the database
  • server (str): The name of the SQL Server
  • database (str): The name of the database
  • schema (str): The name of the schema

Usage:

import pandas as pd
import datanerd as dn

df = pd.read_csv('day.csv')
dn.pushdb(df, tablename='day', server='SQL', database='schedule', schema='analysis')

4. teams_webhook()

This function sends a formatted message to a Microsoft Teams channel using a webhook URL.

Parameters:

  • webhook_url (str): The webhook URL for the Teams channel
  • title (str): The title of the message
  • message (str): The body of the message

Usage:

import datanerd as dn

webhook_url = "https://outlook.office.com/webhook/..."
title = "Important Notification"
message = "This is a test message sent from Python!"

dn.teams_webhook(webhook_url, title, message)

5. ntfy()

This function sends a notification message to an ntfy.sh server.

Parameters:

  • server (str): The name of the ntfy.sh server/topic to send the message to
  • message (str): The message to be sent

Usage:

import datanerd as dn

server = "your_server_name"
message = "This is a test notification from Python!"

dn.ntfy(server, message)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datanerd-1.0.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

datanerd-1.0-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file datanerd-1.0.tar.gz.

File metadata

  • Download URL: datanerd-1.0.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for datanerd-1.0.tar.gz
Algorithm Hash digest
SHA256 8aff4ed9f79464067d48c10359a978a22969b8ca1f66ec75f9f4db906dbfab0d
MD5 2a0fe1d78377a08ed8e0e85598173cff
BLAKE2b-256 f45f44b85c83d37f404063e0cc550adc306381385f4eba4ea60847b16ad3d06f

See more details on using hashes here.

File details

Details for the file datanerd-1.0-py3-none-any.whl.

File metadata

  • Download URL: datanerd-1.0-py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for datanerd-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e3a421f2652e35b65129c3a0e69bb5cb2e5a68785b147160d767d274c0faa929
MD5 2b7c3b0d333a956ade6bc266cc2b6f7e
BLAKE2b-256 548e7a4a2618350a3976ad1553dfb3a29826768e671d4b418f5a267300ad39d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page