Skip to main content

Contains multiple functions stats(), iv_woe(), pushdb(), teams_webhook(), and ntfy()

Project description

DataNerd

This package provides various functions for data analysis, statistical calculations, database operations, and sending notifications.

Installation

To use these functions, you need to have Python installed on your system. You also need to install the required libraries. You can install them using pip:

pip install pandas numpy sqlalchemy requests

Functions

1. stats()

This function provides statistical summary of a given dataframe.

Parameters:

  • df (pandas.DataFrame): The input dataframe

Returns:

  • A dataframe containing various statistics for each column

Statistics provided:

  • count
  • mean
  • std
  • min
  • 10th, 20th, 25th, 30th, 40th, 50th (median), 60th, 70th, 75th, 80th, 90th, 95th, 99th percentiles
  • max
  • % of missing values
  • number of unique values

Usage:

import pandas as pd
import datanerd as dn

df = pd.read_csv('titanic.csv')
summary_stats = dn.stats(df)

2. iv_woe()

This function calculates the Weight of Evidence (WoE) and Information Value (IV) for a given dataframe.

Parameters:

  • data (pandas.DataFrame): The input dataframe
  • target (str): The name of the target variable
  • bins (int): The number of bins to use for discretizing continuous variables
  • optimize (bool): Whether to optimize the binning of continuous variables
  • threshold (float): The minimum percentage of non-events in each bin for optimization

Returns:

  • A tuple containing two dataframes: (iv, woe)

Usage:

import pandas as pd
import datanerd as dn

df = pd.read_csv('cancer.csv')
iv, woe = dn.iv_woe(data=df, target='Diagnosis', bins=20, optimize=True, threshold=0.05)

3. pushdb()

This function pushes a Pandas dataframe to a Microsoft SQL Server database.

Parameters:

  • data (pandas.DataFrame): The dataframe to be pushed
  • tablename (str): The name of the table in the database
  • server (str): The name of the SQL Server
  • database (str): The name of the database
  • schema (str): The name of the schema

Usage:

import pandas as pd
import datanerd as dn

df = pd.read_csv('day.csv')
dn.pushdb(df, tablename='day', server='SQL', database='schedule', schema='analysis')

4. teams_webhook()

This function sends a formatted message to a Microsoft Teams channel using a webhook URL.

Parameters:

  • webhook_url (str): The webhook URL for the Teams channel
  • title (str): The title of the message
  • message (str): The body of the message

Usage:

import datanerd as dn

webhook_url = "https://outlook.office.com/webhook/..."
title = "Important Notification"
message = "This is a test message sent from Python!"

dn.teams_webhook(webhook_url, title, message)

5. ntfy()

This function sends a notification message to an ntfy.sh server.

Parameters:

  • server (str): The name of the ntfy.sh server/topic to send the message to
  • message (str): The message to be sent

Usage:

import datanerd as dn

server = "your_server_name"
message = "This is a test notification from Python!"

dn.ntfy(server, message)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datanerd-1.1.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

datanerd-1.1-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file datanerd-1.1.tar.gz.

File metadata

  • Download URL: datanerd-1.1.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for datanerd-1.1.tar.gz
Algorithm Hash digest
SHA256 74ddaca4ec6136001615c081c653762afadcd6f6e9cd0beb877be2ad88c9d873
MD5 6bc7e10f5d71319f4ad5edcf3af00f1a
BLAKE2b-256 4df1e693c5893724d9cedd5b2a94f172d5fdea4bf3b4e60d0e404efb1debcdb3

See more details on using hashes here.

File details

Details for the file datanerd-1.1-py3-none-any.whl.

File metadata

  • Download URL: datanerd-1.1-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for datanerd-1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 17bb79b0af4cf79d829631a73b9ccd92ce4490f40fbee0e100b4e01cbd30df73
MD5 7328ce9561cef61ebcdc8ac0349f6a3f
BLAKE2b-256 b8e415f1f541b5e970cfce3c6dc6f388b4835eb6fa4a188ce10a1b52cb25281c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page