Anonymizer tool for datasets such CSV files
Project description
Anonymizer tool for datasets such CSV files.
To generate fake data, you can choose between two excelent generators:
Install
Using pip:
pip install datanonymizer
Using mimesis instead of the default Faker:
pip install datanonymizer[mimesis]
Or from source:
git clone https://github.com/fgmacedo/datanonymizer
cd datanonymizer
python setup.py install
Usage
Pass your data through stdin and get it back anonymized on stdout.
cat input_file.csv | datanonymizer >output_file.csv
Using a config file to declare conversions and generators for the required fields:
cat input_file.csv | datanonymizer --config ./dataset_anon_config.yml >output_file.csv
Please see examples folder for a small demo:
cat examples/small.csv | python -m datanonymizer -i --config examples/small_faker.yml --seed my_seed >examples/small_anonymized_using_faker.csv
Optional arguments:
-h, --help show this help message and exit
-l LANGUAGE, --language LANGUAGE
Language used by the Generator
-di DELIMITER_INPUT, --delimiter_input DELIMITER_INPUT
CSV delimiter
-do DELIMITER_OUTPUT, --delimiter_output DELIMITER_OUTPUT
CSV delimiter
-i, --ignore_errors Continue on errors
--head HEAD Outputs only the first <HEAD> lines
-g {faker,mimesis}, --generator {faker,mimesis}
Generator library to be used for fake data
--seed SEED Seed for the pseudo random generator providers
--config CONFIG Configuration file
Config file
You’l need a configuration file to setup transformations for each dataset.
This file is a simple yaml where you can configure fields.
Field names should match the column name declared into the CSV input file.
---
fields:
Task ID:
omit: true
Location:
conversions:
- fn: coords_to_h3
kwargs:
resolution: 8
Client Address:
conversions:
- fn: has_value
rename: has_address
Company Name:
generator:
provider: business.company
rename: company
Invoice ID:
generator:
provider: person.identifier
kwargs:
mask: "#######"
rename: invoice
Generators
The generatos clause depends of the library you choose to provide fake data.
You can use any generator available at the generic API from Faker or mimesis.
For example, if you wanna mimic data with company names:
Faker
--- fields: Company Name: generator: provider: company
Mimesis
--- fields: Company Name: generator: provider: business.company
But you can replace the real names by names of fruits (using Mimesis) or any other provider:
---
fields:
Company Name:
generator:
provider: food.fruit
Or generate random integers to replace real IDs:
Faker
--- fields: ID: generator: provider: pyint kwargs: min_value: 1 max_value: 15_000_000
Mimesis
--- fields: ID: generator: provider: person.identifier kwargs: mask:
"#######"
Conversions
You can apply any pre-configured conversion functions available.
coords_to_h3
has_value
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file datanonymizer-0.2.tar.gz
.
File metadata
- Download URL: datanonymizer-0.2.tar.gz
- Upload date:
- Size: 7.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb12000901ec0cdf3fae35934f061ca09c5e86f4f1816a698450364480c73cb2 |
|
MD5 | 7018868e3dd17c08cc684439fb08e458 |
|
BLAKE2b-256 | 8321d005ba263aa954decf5291dc3c10f761439534f0989ec3b81b816c5bfad5 |