Data visualization toolbox.
Project description
Welcome to the dataoutsider visualization toolbox!
Featuring
- pie_tree chart
- level plot
pie_tree
Need to display hierarchical density as pie-shaped areas?
- Select [1 to n] categorical columns from a dataframe to group by
- Configure the chart ordering and hierarchy orientation
- The pie_tree chart will create a hierarchical set of areas sized by the number of rows in each group at each level
Example:
import dataoutsider as dr
df = dr.load_aircraft_df()
levels = ['Registrant', 'Aircraft', 'Engine', 'seats_bin']
inner_radius = 0.5
outer_radius = 2.0
starting_angle = 0.0
ending_angle = 360.0
point_resolution = 200
pie_tree_df = dr.pie_tree_calc(
df, levels,
inner_radius,
outer_radius,
starting_angle,
ending_angle,
point_resolution)
dr.pie_tree_plot(pie_tree_df, 4)
Variations:
inner_radius = 0.0
outer_radius = 2.0
starting_angle = 0.0
ending_angle = 90.0
Extra Parameters:
Parameter | Values | Description |
---|---|---|
default_sort | True/False | Default: False, True: pandas sort, False: data sort |
default_sort_override | True/False | Default: True, True: overrides default_sort |
default_sort_override_reversed | True/False | Default: False, sort areas True: desc, False: asc |
all_vertical | True/False | Default: False, True: break levels vertically, False: alternate |
Plotting:
From the above example with 4 possible levels:
Level 3 only
dr.pie_tree_plot(pie_tree_df, 3)
Level 2 bold outline
Level 3 thin outline
dr.pie_tree_plot(pie_tree_df, 3)
Tableau users:
Examples:
- Functional ideas (including mapping): pie_tree
- Combined with a [Hierarchical Radial Tree Diagram]: Takeoff
Check back soon for updates!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dataoutsider-1.0.8.tar.gz
(4.8 kB
view details)
Built Distribution
File details
Details for the file dataoutsider-1.0.8.tar.gz
.
File metadata
- Download URL: dataoutsider-1.0.8.tar.gz
- Upload date:
- Size: 4.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9465b5a003d16330804a3be7fe851044b73c4c2ff20e8320587cb5253864aaa |
|
MD5 | ce82bf32814790af1734c87e851ea181 |
|
BLAKE2b-256 | ed5d68ed733687648f3c7a8b48c4dd6e38ef926041e8f43764639368b6cf5bf0 |
File details
Details for the file dataoutsider-1.0.8-py3-none-any.whl
.
File metadata
- Download URL: dataoutsider-1.0.8-py3-none-any.whl
- Upload date:
- Size: 5.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a138a69acdf4b76a6a40fb21abdc3ba885015fc08d592f00bec0b7dc94b4b9f |
|
MD5 | 9408d192935788ca79f2b3e077e08b9d |
|
BLAKE2b-256 | 650be38bbd8515b52aba1ea6faefb0d6a832305ca13514683ad8c4107834d932 |