Skip to main content

Data visualization toolbox.

Project description

Welcome to the dataoutsider visualization toolbox!

Featuring

  • pie_tree chart
    • level plot

pie_tree

Need to display hierarchical density as pie-shaped areas?

  1. Select [1 to n] categorical columns from a dataframe to group by
  2. Configure the chart ordering and hierarchy orientation
  3. The pie_tree chart will create a hierarchical set of areas sized by the number of rows in each group at each level

Example:

import dataoutsider as dr

df = dr.load_aircraft_df()
levels = ['Registrant', 'Aircraft', 'Engine', 'seats_bin']

inner_radius = 0.5
outer_radius = 2.0
starting_angle = 0.0
ending_angle = 360.0
point_resolution = 200
pie_tree_df = dr.pie_tree_calc(
    df, levels, 
    inner_radius, 
    outer_radius, 
    starting_angle, 
    ending_angle, 
    point_resolution)

dr.pie_tree_plot(pie_tree_df, 4)

This is a alt text.

Variations:

inner_radius = 0.0
outer_radius = 2.0

This is a alt text.

starting_angle = 0.0
ending_angle = 90.0

This is a alt text.

Extra Parameters:

Parameter Values Description
default_sort True/False Default: False, True: pandas sort, False: data sort
default_sort_override True/False Default: True, True: overrides default_sort
default_sort_override_reversed True/False Default: False, sort areas True: desc, False: asc
all_vertical True/False Default: False, True: break levels vertically, False: alternate

Plotting:

From the above example with 4 possible levels:

Level 3 only

dr.pie_tree_plot(pie_tree_df, 3)

This is a alt text.

Level 2 bold outline

Level 3 thin outline

dr.pie_tree_plot(pie_tree_df, 3)

This is a alt text.

Tableau users:

Examples:

  • Functional ideas (including mapping): pie_tree
  • Combined with a [Hierarchical Radial Tree Diagram]: Takeoff

Check back soon for updates!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataoutsider-1.0.8.tar.gz (4.8 kB view details)

Uploaded Source

Built Distribution

dataoutsider-1.0.8-py3-none-any.whl (5.5 MB view details)

Uploaded Python 3

File details

Details for the file dataoutsider-1.0.8.tar.gz.

File metadata

  • Download URL: dataoutsider-1.0.8.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9

File hashes

Hashes for dataoutsider-1.0.8.tar.gz
Algorithm Hash digest
SHA256 c9465b5a003d16330804a3be7fe851044b73c4c2ff20e8320587cb5253864aaa
MD5 ce82bf32814790af1734c87e851ea181
BLAKE2b-256 ed5d68ed733687648f3c7a8b48c4dd6e38ef926041e8f43764639368b6cf5bf0

See more details on using hashes here.

File details

Details for the file dataoutsider-1.0.8-py3-none-any.whl.

File metadata

  • Download URL: dataoutsider-1.0.8-py3-none-any.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9

File hashes

Hashes for dataoutsider-1.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 1a138a69acdf4b76a6a40fb21abdc3ba885015fc08d592f00bec0b7dc94b4b9f
MD5 9408d192935788ca79f2b3e077e08b9d
BLAKE2b-256 650be38bbd8515b52aba1ea6faefb0d6a832305ca13514683ad8c4107834d932

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page