Easily navigate nested data structures for building readable data pipelines.
Project description
datapath
Easily navigate nested data structures for building readable data pipelines.
Use case
Do you ever find yourself writing ugly code to access nested values? Fret no longer!
Go from this:
data = {
"users": {
"Alice": {
"profile": {
"age": 30,
"email": "alice@example.com"
}
},
"Bob": {
"profile": {
"age": 25,
"email": "bob@example.com"
}
}
}
}
alice_age = data["users"]["Alice"]["profile"]["age"]
alice_email = data["users"]["Alice"]["profile"]["email"]
bob_age = data.get("users", {}).get("Bob", {}).get("profile", {}).get("age", "Unknown")
bob_email = data.get("users", {}).get("Bob", {}).get("profile", {}).get("email", "Unknown")
To this:
from datapath import Path
alice_age = Path.users.Alice.profile.age(data)
alice_email = Path.users.Alice.profile.email(data)
bob_age= Path.users.Bob.profile.age(data, default="Unknown")
bob_email = Path.users.Bob.profile.email(data, default="Unknown")
Features
- Easy navigation of nested data: Use simple attribute and item access to traverse nested dictionaries and lists.
- Flexible data retrieval: Retrieve data with optional type checking and default values if the path does not exist or leads to an error.
- Enhanced readability: Create more readable code by abstracting complex data access into straightforward, path-based retrievals.
Installation
datapath
is available on PyPI, so you can install it using using pip:
pip install datapath
Basic Usage
The Path
class is the core of the datapath
package. Here's how you can use it:
Creating a Path
from datapath import Path
# Create a Path simply by chaining attributes or items
path = Path.data.users[0].name
Accessing Data
Once you've created a path, you can use it to access data in nested structures:
# Given a nested dictionary
data = {
"data": {
"users": [
{"name": "Alice", "age": 30},
{"name": "Bob", "age": 25}
]
}
}
# To retrieve data using the path, simply call the path with the data as an argument.
user_name = Path.data.users[0].name(data)
print(user_name) # Prints 'Alice'
Advanced Usage
Using Default Values
If a part of the path doesn't exist, you can specify a default value to return instead of raising an error:
# Returns 'Unknown' if the specified index is out of range
name = Path.data.users[2].name(data, default="Unknown")
print(name) # Prints 'Unknown'
Type Checking
You can enforce the type of the returned value:
# Specify the expected type, returns the value if it matches, raises a TypeError otherwise
age = Path.data.users[0].age(data, type_=int)
print(age) # Prints 30
Note: Type enforcement can be disabled by setting
check_type
to False.type_
andoptional
can still be used to define type hints for your data whencheck_type
is False.
Optional Type Specification
You can specify that a return type is optional, which means it will return None
if the path is not found or the type does not match, rather than raising an error:
# Optional type checking, returns None if not found or type mismatch
birthday = Path.data.users[0].birthday(data, optional=str)
print(birthday) # Prints None since 'birthday' does not exist
Understanding the Arguments
The __call__
method of the Path
class supports several arguments that adjust the behavior to be used when accessing values:
- data: The nested structure to be accessed.
- default: If provided, this value is returned when the path leads to an error or does not exist.
- type_: Enforces that the returned value matches this type, raising a TypeError if it does not.
- optional: Like
type_
, but returnsNone
instead of raising a KeyError when the path does not exist. - check_type: If
True
, the type of the returned value is checked againsttype_
oroptional
(default isTrue
). If the type does not match, a TypeError is raised. WhenFalse
, no type checking is performed (faster but less safe).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file datapath-0.0.4.tar.gz
.
File metadata
- Download URL: datapath-0.0.4.tar.gz
- Upload date:
- Size: 5.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54074f1766bd0033f525a6a8fd1ee40ba3783f1c844d1f53199ca269a82bec54 |
|
MD5 | 6f9baccdba8f15d5cb7f9795993c0702 |
|
BLAKE2b-256 | dffa420b5dcfa0c3573b88f0b8a56ff11871aedd0f013f7e7b20980dacef21ad |
File details
Details for the file datapath-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: datapath-0.0.4-py3-none-any.whl
- Upload date:
- Size: 6.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d51fd48f644a53423d8a02c19bd5262ca2350025a39655ebd080f9daf1513f7d |
|
MD5 | 4c4e1ddea977289afa2411b2fe226a76 |
|
BLAKE2b-256 | 40822c15edda07d44dbb2e28d8bb50d112245eced8195f475e4c31323ce314d4 |