Skip to main content

Easily navigate nested data structures for building readable data pipelines.

Project description

datapath

PyPI PyPI - License

Easily navigate nested data structures for building readable data pipelines.

Use case

Do you ever find yourself writing ugly code to access nested values? Fret no longer!

Go from this:

data = {
    "users": {
        "Alice": {
            "profile": {
                "age": 30,
                "email": "alice@example.com"
            }
        },
        "Bob": {
            "profile": {
                "age": 25,
                "email": "bob@example.com"
            }
        }
    }
}

alice_age = data["users"]["Alice"]["profile"]["age"]
alice_email = data["users"]["Alice"]["profile"]["email"]

bob_age = data.get("users", {}).get("Bob", {}).get("profile", {}).get("age", "Unknown")
bob_email = data.get("users", {}).get("Bob", {}).get("profile", {}).get("email", "Unknown")

To this:

from datapath import Path


alice_age = Path.users.Alice.profile.age(data)
alice_email = Path.users.Alice.profile.email(data)

bob_age= Path.users.Bob.profile.age(data, default="Unknown")
bob_email = Path.users.Bob.profile.email(data, default="Unknown")

Features

  • Easy navigation of nested data: Use simple attribute and item access to traverse nested dictionaries and lists.
  • Flexible data retrieval: Retrieve data with optional type checking and default values if the path does not exist or leads to an error.
  • Enhanced readability: Create more readable code by abstracting complex data access into straightforward, path-based retrievals.

Installation

datapath is available on PyPI, so you can install it using using pip:

pip install datapath

Basic Usage

The Path class is the core of the datapath package. Here's how you can use it:

Creating a Path

from datapath import Path

# Create a Path simply by chaining attributes or items
path = Path.data.users[0].name

Accessing Data

Once you've created a path, you can use it to access data in nested structures:

# Given a nested dictionary
data = {
    "data": {
        "users": [
            {"name": "Alice", "age": 30},
            {"name": "Bob", "age": 25}
        ]
    }
}

# To retrieve data using the path, simply call the path with the data as an argument.
user_name = Path.data.users[0].name(data)
print(user_name)    # Prints 'Alice'

Advanced Usage

Using Default Values

If a part of the path doesn't exist, you can specify a default value to return instead of raising an error:

# Returns 'Unknown' if the specified index is out of range
name = Path.data.users[2].name(data, default="Unknown")
print(name)  # Prints 'Unknown'

Type Checking

You can enforce the type of the returned value:

# Specify the expected type, returns the value if it matches, raises a TypeError otherwise
age = Path.data.users[0].age(data, type_=int)
print(age) # Prints 30

Note: Type enforcement can be disabled by setting check_type to False. type_ and optional can still be used to define type hints for your data when check_type is False.

Optional Type Specification

You can specify that a return type is optional, which means it will return None if the path is not found or the type does not match, rather than raising an error:

# Optional type checking, returns None if not found or type mismatch
birthday = Path.data.users[0].birthday(data, optional=str)
print(birthday)  # Prints None since 'birthday' does not exist

Understanding the Arguments

The __call__ method of the Path class supports several arguments that adjust the behavior to be used when accessing values:

  • data: The nested structure to be accessed.
  • default: If provided, this value is returned when the path leads to an error or does not exist.
  • type_: Enforces that the returned value matches this type, raising a TypeError if it does not.
  • optional: Like type_, but returns None instead of raising a KeyError when the path does not exist.
  • check_type: If True, the type of the returned value is checked against type_ or optional (default is True). If the type does not match, a TypeError is raised. When False, no type checking is performed (faster but less safe).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datapath-0.0.4.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

datapath-0.0.4-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file datapath-0.0.4.tar.gz.

File metadata

  • Download URL: datapath-0.0.4.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for datapath-0.0.4.tar.gz
Algorithm Hash digest
SHA256 54074f1766bd0033f525a6a8fd1ee40ba3783f1c844d1f53199ca269a82bec54
MD5 6f9baccdba8f15d5cb7f9795993c0702
BLAKE2b-256 dffa420b5dcfa0c3573b88f0b8a56ff11871aedd0f013f7e7b20980dacef21ad

See more details on using hashes here.

File details

Details for the file datapath-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: datapath-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 6.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for datapath-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 d51fd48f644a53423d8a02c19bd5262ca2350025a39655ebd080f9daf1513f7d
MD5 4c4e1ddea977289afa2411b2fe226a76
BLAKE2b-256 40822c15edda07d44dbb2e28d8bb50d112245eced8195f475e4c31323ce314d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page