This library provides tools that allow datasets to be defined separately from a pipeline.
Project description
Datarade
This library provides tools that allow datasets to be defined separately from a pipeline.
Overview
This library separates the 'how' from the 'what' when sourcing datasets and producing data pipelines. The definition of a dataset is stored in a git repository and referenced by name in the client application. This allows the definition to be source controlled independently from the client application. Also, by adding branch support, a dataset catalog can hold different 'environments' as branches. This allows you to promote your dataset definition and your client application code using your standard CI/CD process while also giving you an area to perform UAT.
Requirements
- Python 3.7+
- marshmallow
- pyyaml
- requests
- azure-devops
- sqlalchemy
- pyodbc
- bcp
Installation
This package is hosted on PyPI:
pip install datarade
Examples
Use datarade services to obtain metadata about your datasets from your dataset catalog:
import datarade
repository_url = 'https://raw.githubusercontent.com/fivestack/datarade_test_catalog'
dataset_catalog = datarade.get_dataset_catalog(
repository=repository_url,
organization='fivestack',
platform='github'
) # no username/password since only public repos are currently supported for github
dataset = datarade.get_dataset(dataset_catalog=dataset_catalog, dataset_name='my_dataset')
print(dataset.name)
print(dataset.definition)
Use datarade services to write datasets to a database:
import datarade
repository_url = 'https://raw.githubusercontent.com/mikealfare/dataset_catalog_test/master'
dataset_catalog = datarade.get_dataset_catalog(
repository=repository_url,
organization='fivestack',
platform='azure-devops',
username='USERNAME_TO_ACCESS_THE_GIT_REPO',
password='PASSWORD_TO_ACCESS_THE_GIT_REPO'
)
dataset_container = datarade.get_dataset_container(
driver='mssql',
database_name='datarade',
host=r'localhost\DATARADE',
username='USERNAME_TO_WRITE_TO_THE_DATABASE',
password='PASSWORD_TO_WRITE_TO_THE_DATABASE'
)
# you can do one off writes like this
dataset = datarade.get_dataset(dataset_catalog=dataset_catalog, dataset_name='my_dataset')
datarade.write_dataset(
dataset=dataset,
dataset_container=dataset_container,
username='USERNAME_TO_READ_THE_DATASET_FROM_THE_SOURCE',
password='PASSWORD_TO_READ_THE_DATASET_FROM_THE_SOURCE'
)
def write_dataset_wrapper(dataset_name: str, username: str = None, password: str = None):
"""
But it may be useful to create a function that wraps the configuration like this if you are writing several datasets
and only using one DatasetCatalog and one DatasetContainer.
"""
dataset = datarade.get_dataset(dataset_catalog=dataset_catalog, dataset_name=dataset_name)
datarade.write_dataset(dataset=dataset, dataset_container=dataset_container, username=username, password=password)
write_dataset_wrapper(
dataset_name='my_other_dataset',
username='USERNAME_FOR_THIS_SOURCE',
password='PASSWORD_FOR_THIS_SOURCE'
)
Full Documentation
For the full documentation, please visit: https://datarade.readthedocs.io/en/latest/
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file datarade-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: datarade-0.3.0-py3-none-any.whl
- Upload date:
- Size: 14.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.23.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63f3c4271f6bba16d2bca7d4bee5b7bdc5609f5b474546ff7095d1839f15eddc |
|
MD5 | 0deb0f790e33be0bd830a3b88352c6ba |
|
BLAKE2b-256 | 334c70e4fed82480a3f4f25bdebad201d31dae2bcace04e6588762c397d1cdb1 |