Skip to main content

A recipe for every data baker

Project description

DataRecipe

Table of Contents

  1. Overview
  2. Functions
  3. Contact Information

Overview

This toolkit provides a variety of Python functions to facilitate common data manipulation, data import/export, and database operations.

Functions

General Features

send_email

Sends an email using SMTP with SSL/TLS options, supporting attachments if provided.

  • Parameters:
    • subject: Email subject as a string.
    • body: Main content of the email.
    • send_email_address: Sender's email address.
    • send_email_password: Sender's email password for SMTP authentication.
    • receive_email_address: Recipient's email address.
    • attachment_path: Directory path where attachments are stored (optional).
    • attachment_list: List of filenames to be attached (optional).
    • smtp_address: SMTP server address (default: 'smtp.feishu.cn').
    • smtp_port: SMTP server port (default: 465).

Example with Attachments:

send_email(
    "Meeting Documents", 
    "Please see attached documents for the upcoming meeting.", 
    "sender@example.com", 
    "password123", 
    "receiver@example.com", 
    attachment_path="/path/to/documents", 
    attachment_list=["agenda.pdf", "minutes.docx"]
)

Data Validation and Cleaning

check_empty

Checks for empty entries in specified DataFrame columns.

  • Parameters:
    • df: DataFrame to check.
    • columns: Columns to check for missing values.
    • output_cols: Columns to include in the output.

Example:

empty_data = check_empty(df, columns=["name", "email"])

clean_dataframe

Cleans DataFrame by replacing infinite values with NaN.

  • Parameters:
    • df: DataFrame to clean.

Example:

clean_dataframe(df)

Data Import/Export

local_to_df

Converts files from a local directory to a pandas DataFrame.

  • Parameters:
    • path: Directory path to search for files.
    • partial_file_name: File name pattern to match.
    • skip_rows: Number of rows to skip at the start of each file.
    • keep_file_name: If True, adds a column with the file name.
    • sheet_num: For Excel files, specifies the sheet number to read.
    • encoding: Character encoding of the files.

Example with CSV files:

df = local_to_df("./data", "sample", keep_file_name=True)

Example with Excel files:

df = local_to_df("./data", "report", sheet_num=2, encoding='utf-8')

df_to_xlsx

Saves a DataFrame to an Excel file.

  • Parameters:
    • df: DataFrame to save.
    • directory_path: Path to directory where the file will be saved.
    • file_name: Name of the output file.

Example:

df_to_xlsx(df, "./output", "output_data")

df_to_csv

Saves a DataFrame to a CSV file.

  • Parameters:
    • df: DataFrame to save.
    • directory_path: Path to directory where the file will be saved.
    • file_name: Name of the output file.

Example:

df_to_csv(df, "./output", "output_data")

Database Operations

update

Updates records in a database table based on conditions.

  • Parameters:
    • raw_df: DataFrame containing new data to update.
    • database: Database name.
    • table: Table name.
    • yaml_file_name: YAML file name with DB configuration.
    • clause: SQL clause for record deletion.
    • date_col: Column name containing date data.
    • custom_path: Path to directory containing the YAML file.

Example:

update(df, "test_db", "user_data", clause="user_id > 10")

sql_query

Executes a SELECT SQL query and returns a DataFrame.

  • Parameters:
    • database: Database name.
    • sql: SQL SELECT statement.
    • yaml_file_name: YAML file name with DB configuration.
    • custom_path: Optional path to directory containing the YAML file.

Example:

result_df = sql_query("test_db", "SELECT * FROM users")

Contact Information

For any questions or suggestions regarding the toolkit, please contact us at:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datarecipe-2.0.3.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

datarecipe-2.0.3-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file datarecipe-2.0.3.tar.gz.

File metadata

  • Download URL: datarecipe-2.0.3.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for datarecipe-2.0.3.tar.gz
Algorithm Hash digest
SHA256 5a30f38a698d4b96df93233d592b547e86e6e17b27cced9ea61b0539ef8c625a
MD5 8c0224e8397df66a3a4f50827836dc18
BLAKE2b-256 7921501f0c4e76ba38a7c06e459137d2f886c39e8993934b801340f1b6380fce

See more details on using hashes here.

File details

Details for the file datarecipe-2.0.3-py3-none-any.whl.

File metadata

  • Download URL: datarecipe-2.0.3-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for datarecipe-2.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 42b9aba2970691979ac2b9b4fb48070400e6bacb41cd350738df845ac9c30f6f
MD5 2bf14bb173e5d620aff9a8de6d21479c
BLAKE2b-256 b49b255fbaba4662ef44ddbe145b13378e238ce7c260fa513b3567b9ef831232

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page