A wrapper for HuggingFace datasets with additional utilities
Project description
🤗 datasets-plus
A wrapper for Hugging Face datasets with extra utilities! 🚀
🌟 Features
- 🔧 Simplified dataset loading
- 🔀 Easy splitting and configuration
- 📁 Support for local and remote datasets
- 🧰 Additional utility functions
🚀 Installation
Install datasets-plus using pip:
pip install datasets-plus
📚 Usage
Here's a quick example of how to use datasets-plus:
from datasets_plus import load_dataset
# Load validation fold of TriviaQA's unfiltered subset
dataset = load_dataset("mandarjoshi/trivia_qa:unfiltered:validation")
# Print dataset info
print(f"Loaded dataset with {len(dataset)} examples")
print("First example:", dataset[0])
# Load the train fold of the local hf dataset saved at /path/to/dataset
dataset = load_dataset("/path/to/dataset:train")
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgements
- Hugging Face Datasets for the amazing foundation
- All our contributors and users!
Happy data loading! 🎉
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
datasets_plus-0.1.0.tar.gz
(5.0 kB
view details)
Built Distribution
File details
Details for the file datasets_plus-0.1.0.tar.gz
.
File metadata
- Download URL: datasets_plus-0.1.0.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af333ae65ea3ee91f3a2affd3acb4d5d449b660e2e28cc86bd2c1acf430c68d1 |
|
MD5 | 9cc331f4545eae3760e9a60a263ca012 |
|
BLAKE2b-256 | e670940389fae26c6089d83fb92b3d92160c9d50e2e957802bef8bc9a18d26c3 |
File details
Details for the file datasets_plus-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: datasets_plus-0.1.0-py3-none-any.whl
- Upload date:
- Size: 4.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8fe757e88199d37f1ff2bcae145d7ac4f233290b5c77052ad3f4f3a30674de50 |
|
MD5 | 068d547395a482adc94cc17a6e070a32 |
|
BLAKE2b-256 | e7dad169f0f58ade845d2e0a84fff65a7a06c7669011d7d0a64d071c75cb1c35 |