Skip to main content

Quick visualization of large datasets using CLI based on datashader.

Project description

datashader-cli

image image

image

Quick visualization of large datasets using CLI based on datashader.

Installation

Use pip

pip install datashader-cli

Use pip from Github

pip install git+https://github.com/wybert/datashader-cli.git

Quick Start

Visualize 10 million NYC taxi trip data points in Gigabytes.

Create a shaded scatter plot of points and save it to png file, set background color to black.

datashader_cli points nyc_taxi.parquet --x pickup_x --y pickup_y pickup-scatter.png --background black

Visualize the geospaital data, support Geoparquet, Shapefile, Geojson, Geopackage, etc.

datashader_cli points data.geo.parquet data.png --geo true

Use matplotlib to render the image, matplotlib will enable the colorbar, but it can't use spread function

datashader_cli points data.geo.parquet data.png --geo true --matplotlib true

Usage

datashader_cli --help

# sage: datashader_cli [OPTIONS] COMMAND [ARGS]...

#   Quick visualization of large datasets using CLI based on datashader.

#   Supported data format: csv, parquet, hdf, feather, geoparquet, shapefile,
#   geojson, geopackage, etc.

# Options:
#   --help  Show this message and exit.

# Commands:
#   points  Visualize points data.

Quick visualization of large point datasets using CLI based on datashader.

datashader_cli points --help

# Usage: datashader_cli points [OPTIONS] DATA_PATH OUTPUT_APTH

#   Visualize points data.

# Options:
#   --x TEXT              Name of the x column, if geo=True, x is optional
#   --y TEXT              Name of the y column, if geo=True, y is optional
#   --w INTEGER           How many pixels wide to make the image
#   --h INTEGER           How many pixels high to make the image
#   --x_range TEXT        Range of the x axis, in the form of "xmin,xmax"
#   --y_range TEXT        Range of the y axis, in the form of "ymin,ymax"
#   --agg TEXT            Aggregation function, e.g. "mean", "count", "sum", see
#                         datashader docs
#                         (https://datashader.org/api.html#reductions) for more
#                         options
#   --agg_col TEXT        Column to aggregate on, e.g. "value"
#   --by TEXT             Column to group by, e.g. "category", see datashader
#                         docs (https://datashader.org/api.html#reductions) for
#                         more options
#   --spread_px INTEGER   How many pixels to spread points by, e.g. 1, see https
#                         ://datashader.org/api.html#datashader.transfer_functio
#                         ns.spread
#   --how TEXT            How to map values to colors, valid strings are
#                         ‘eq_hist’ [default], ‘cbrt’ (cube root), ‘log’
#                         (logarithmic), and ‘linear’. see https://datashader.or
#                         g/api.html#datashader.transfer_functions.set_backgroun
#                         d
#   --cmap TEXT           Name of the colormap, see https://colorcet.holoviz.org
#                         for more options
#   --geo BOOLEAN         Whether the data is geospatial, if True, x and y are
#                         optional, need Geopandas installed to use this option,
#                         supported data format: Geoparquet, shapefile, geojson,
#                         geopackage, etc.
#   --background TEXT     Background color, e.g. "black", "white", "#000000",
#                         "#ffffff"
#   --matplotlib BOOLEAN  Whether to use matplotlib to render the image, if
#                         True, need matplotlib installed to use this option.
#                         Matplotlib will enable the colorbar, but it can't use
#                         spread function
#   --help                Show this message and exit.

Credits

Features

  • point data visualization

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datashader-cli-0.0.4.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

datashader_cli-0.0.4-py2.py3-none-any.whl (7.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file datashader-cli-0.0.4.tar.gz.

File metadata

  • Download URL: datashader-cli-0.0.4.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for datashader-cli-0.0.4.tar.gz
Algorithm Hash digest
SHA256 0a377871bbb637bcdc961568de1e4cfdd0cf411645a3906c2860b07f621a9736
MD5 ba2c005b0a19d67cb3c50899f6115010
BLAKE2b-256 ff37dece17529710238658075fc32fd50651e6837eb24a72f45eaa85dcef92d7

See more details on using hashes here.

File details

Details for the file datashader_cli-0.0.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for datashader_cli-0.0.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 91728935383121eb5c4669babc0e85d6c3db5069ab72c51f04dc505de6597831
MD5 29b3ce60572bc16a6513ef3b94e7dfdb
BLAKE2b-256 7ba437c019773f6922c3d9a1e5456d81fda97bbecc9f926d2c33e4ca2b1fb75e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page