Skip to main content

Quick visualization of large datasets using CLI based on datashader.

Project description

datashader-cli

image image

image

Quick visualization of large datasets using CLI based on datashader.

Installation

pip install git+https://github.com/wybert/datashader-cli.git

Quick Start

Visualize 10 million NYC taxi trip data points in Gigabytes.

Create a shaded scatter plot of points and save it to png file, set background color to black.

datashader_cli points nyc_taxi.parquet --x pickup_x --y pickup_y pickup-scatter.png --background black

Visualize the geospaital data, support Geoparquet, shapefile, geojson, geopackage, etc.

datashader_cli points data.geo.parquet data.png --geo true

Use matplotlib to render the image, matplotlib will enable the colorbar, but it can't use spread function

datashader_cli points data.geo.parquet data.png --geo true --matplotlib true

Usage

datashader_cli --help

# sage: datashader_cli [OPTIONS] COMMAND [ARGS]...

#   Quick visualization of large datasets using CLI based on datashader.

#   Supported data format: csv, parquet, hdf, feather, geoparquet, shapefile,
#   geojson, geopackage, etc.

# Options:
#   --help  Show this message and exit.

# Commands:
#   points  Visualize points data.

Quick visualization of large point datasets using CLI based on datashader.

datashader_cli points --help

# Usage: datashader_cli points [OPTIONS] DATA_PATH OUTPUT_APTH

#   Visualize points data.

# Options:
#   --x TEXT              Name of the x column, if geo=True, x is optional
#   --y TEXT              Name of the y column, if geo=True, y is optional
#   --w INTEGER           How many pixels wide to make the image
#   --h INTEGER           How many pixels high to make the image
#   --x_range TEXT        Range of the x axis, in the form of "xmin,xmax"
#   --y_range TEXT        Range of the y axis, in the form of "ymin,ymax"
#   --agg TEXT            Aggregation function, e.g. "mean", "count", "sum", see
#                         datashader docs
#                         (https://datashader.org/api.html#reductions) for more
#                         options
#   --agg_col TEXT        Column to aggregate on, e.g. "value"
#   --by TEXT             Column to group by, e.g. "category", see datashader
#                         docs (https://datashader.org/api.html#reductions) for
#                         more options
#   --spread_px INTEGER   How many pixels to spread points by, e.g. 1, see https
#                         ://datashader.org/api.html#datashader.transfer_functio
#                         ns.spread
#   --how TEXT            How to map values to colors, valid strings are
#                         ‘eq_hist’ [default], ‘cbrt’ (cube root), ‘log’
#                         (logarithmic), and ‘linear’. see https://datashader.or
#                         g/api.html#datashader.transfer_functions.set_backgroun
#                         d
#   --cmap TEXT           Name of the colormap, see https://colorcet.holoviz.org
#                         for more options
#   --geo BOOLEAN         Whether the data is geospatial, if True, x and y are
#                         optional, need Geopandas installed to use this option,
#                         supported data format: Geoparquet, shapefile, geojson,
#                         geopackage, etc.
#   --background TEXT     Background color, e.g. "black", "white", "#000000",
#                         "#ffffff"
#   --matplotlib BOOLEAN  Whether to use matplotlib to render the image, if
#                         True, need matplotlib installed to use this option.
#                         Matplotlib will enable the colorbar, but it can't use
#                         spread function
#   --help                Show this message and exit.

Credits

Features

  • point data visualization

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datashader-cli-0.0.1.tar.gz (6.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page