Skip to main content

The Apache DataSketches Library for Python

Project description

Apache DataSketchs Logo

The Apache DataSketches Library for Python

This is the official version of the Apache DataSketches Python library.

In the analysis of big data there are often problem queries that don’t scale because they require huge compute resources and time to generate exact results. Examples include count distinct, quantiles, most-frequent items, joins, matrix computations, and graph analysis.

If approximate results are acceptable, there is a class of specialized algorithms, called streaming algorithms, or sketches that can produce results orders-of magnitude faster and with mathematically proven error bounds. For interactive queries there may not be other viable alternatives, and in the case of real-time analysis, sketches are the only known solution.

This package provides a variety of sketches as described below. Wherever a specific type of sketch exists in Apache DataSketches packages for other languages, the sketches will be portable between languages (for platforms with the same endianness).

Building and Installation

Once cloned, the library can be installed by running python3 -m pip install . in the project root directory which will also install the necessary dependencies, namely NumPy and Nanobind.

If you prefer to call the setup.py build script directly, which is discouraged, you must first install nanobind and numpy, as well as any other dependencies listed under the build-system section in pyproject.toml.

The library is also available from PyPI via python3 -m pip install datasketches.

Usage

Having installed the library, loading the Apache DataSketches Library in Python is simple: import datasketches.

The unit tests are mostly structured in a tutorial style and can be used as a reference example for how to feed data into and query the different types of sketches.

Available Sketch Classes

  • KLL (Absolute Error Quantiles)
    • kll_ints_sketch
    • kll_floats_sketch
    • kll_doubles_sketch
    • kll_items_sketch
  • Quantiles (Absolute Error Quantiles, inferior algorithm)
    • quantiles_ints_sketch
    • quantiles_floats_sketch
    • quantiles_doubles_sketch
    • quantiles_items_sketch
  • REQ (Relative Error Quantiles)
    • req_ints_sketch
    • req_floats_sketch
    • req_items_sketch
  • Frequent Items
    • frequent_strings_sketch
    • frequent_items_sketch
    • Error types are frequent_items_error_type.{NO_FALSE_NEGATIVES | NO_FALSE_POSITIVES}
  • Theta
    • update_theta_sketch
    • compact_theta_sketch (cannot be instantiated directly)
    • theta_union
    • theta_intersection
    • theta_a_not_b
    • theta_jaccard_similarity
  • Tuple
    • update_tuple_sketch
    • compact_tuple_sketch (cannot be instantiated directly)
    • tuple_union
    • tuple_intersection
    • tuple_a_not_b
    • tuple_jaccard_similarity
  • HLL
    • hll_sketch
    • hll_union
    • Target HLL types are tgt_hll_type.{HLL_4 | HLL_6 | HLL_8}
  • CPC
    • cpc_sketch
    • cpc_union
  • VarOpt Sampling
    • var_opt_sketch
    • var_opt_union
  • EBPPS Sampling (Exactly proportional to weight)
    • ebpps_sketch
  • Vector of KLL
    • vector_of_kll_ints_sketches
    • vector_of_kll_floats_sketches
  • Kolmogorov-Smirnov Test
    • ks_test applied to a pair of matched-type Absolute Error quantiles sketches
  • Kernel Density
    • density_sketch
  • Count-min sketch
    • count_min_sketch
  • t-digest
    • tdigest_float
    • tdigest_double

Known Differences from C++

The Python API largely mirrors the C++ API, with a few minor exceptions: The primary known differences are that Python on modern platforms does not support unsigned integer values or numeric values with fewer than 64 bits. As a result, you may not be able to produce identical sketches from within Python as you can with Java and C++. Loading those sketches after they have been serialized from another language will work as expected.

The Vector of KLL object is currently exclusive to python, and holds an array of independent KLL sketches. This is useful for creating a set of KLL sketches over a vector and has been designed to allow input as either a vector or a matrix of multiple vectors.

We have also removed reliance on a builder class for theta sketches as Python allows named arguments to the constructor, not strictly positional arguments.

Developer Instructions

The only developer-specific instructions relate to running unit tests.

Unit tests

The Python unit tests are run via tox, with no arguments, from the project root directory. Tox creates a temporary virtual environment in which to build and run the unit tests. In the event you are missing the necessary package, tox may be installed with python3 -m pip install --upgrade tox.

License

The Apache DataSketches Library is distributed under the Apache 2.0 License.

There may be precompiled binaries provided as a convenience and distributed through PyPI via [https://pypi.org/project/datasketches/] contain compiled code from nanobind, which is distributed under a BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datasketches-5.2.0.tar.gz (53.2 kB view details)

Uploaded Source

Built Distributions

datasketches-5.2.0-cp313-cp313-win_amd64.whl (509.1 kB view details)

Uploaded CPython 3.13 Windows x86-64

datasketches-5.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

datasketches-5.2.0-cp313-cp313-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

datasketches-5.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (748.4 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

datasketches-5.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (675.7 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

datasketches-5.2.0-cp313-cp313-macosx_11_0_arm64.whl (578.7 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

datasketches-5.2.0-cp313-cp313-macosx_10_14_x86_64.whl (643.4 kB view details)

Uploaded CPython 3.13 macOS 10.14+ x86-64

datasketches-5.2.0-cp312-cp312-win_amd64.whl (509.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

datasketches-5.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

datasketches-5.2.0-cp312-cp312-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

datasketches-5.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (748.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

datasketches-5.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (675.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

datasketches-5.2.0-cp312-cp312-macosx_11_0_arm64.whl (578.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

datasketches-5.2.0-cp312-cp312-macosx_10_14_x86_64.whl (643.4 kB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

datasketches-5.2.0-cp311-cp311-win_amd64.whl (507.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

datasketches-5.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

datasketches-5.2.0-cp311-cp311-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

datasketches-5.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

datasketches-5.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (682.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

datasketches-5.2.0-cp311-cp311-macosx_11_0_arm64.whl (585.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

datasketches-5.2.0-cp311-cp311-macosx_10_14_x86_64.whl (653.1 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

datasketches-5.2.0-cp310-cp310-win_amd64.whl (506.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

datasketches-5.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

datasketches-5.2.0-cp310-cp310-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

datasketches-5.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

datasketches-5.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (681.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

datasketches-5.2.0-cp310-cp310-macosx_11_0_arm64.whl (585.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

datasketches-5.2.0-cp310-cp310-macosx_10_14_x86_64.whl (652.7 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

datasketches-5.2.0-cp39-cp39-win_amd64.whl (507.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

datasketches-5.2.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

datasketches-5.2.0-cp39-cp39-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

datasketches-5.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

datasketches-5.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (682.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

datasketches-5.2.0-cp39-cp39-macosx_11_0_arm64.whl (585.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

datasketches-5.2.0-cp39-cp39-macosx_10_14_x86_64.whl (652.9 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file datasketches-5.2.0.tar.gz.

File metadata

  • Download URL: datasketches-5.2.0.tar.gz
  • Upload date:
  • Size: 53.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for datasketches-5.2.0.tar.gz
Algorithm Hash digest
SHA256 c00d61da4695e00036e63f590999f584cc39246cbb147b171f375f792604a612
MD5 4546bfd0a3a593449fd5016882a93dfc
BLAKE2b-256 34cd659ae9fc53f34d6deafbe12162977654be5bb0a584e6afa6656337e13952

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 bf8f1cc1b1c4a35554924e27d6c2872e7b0dc065e2694ec83035ffbc203f17c3
MD5 ec6af49fa90f2b30c01d5d6934df3fc8
BLAKE2b-256 6fdac3feb5eca3d7c43d068069b56f77685c01d1ee67e687490cc6341ec920f1

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fbd6eab5af078eb65d678bf27fc468097a1c5db07800ac537a75fd983c437e57
MD5 ad31b6d41df2285afdc93e4f99cc8eb9
BLAKE2b-256 8222a6281d53249af4570b36418de2367114a4ecebd16099e195346641e9d5e8

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6be79e382a4b4fe033a7d3de0033fe81b0e01ebc5124ae24f785214517a847a7
MD5 241a68c7964b69fe054a649e282b9be4
BLAKE2b-256 7d6c9ef89caf91c2d2b70fce5038607f2b5d8b09ee14db6bbe89027a8421ed88

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49e78e52d6a1d63b08a2990873f94bbc9d7427f6907f600af1257f0a9c901b1f
MD5 5d08855acf3b287cf97432812fbf7804
BLAKE2b-256 6233351d1f0c700e143217597d29b333c77695db0f0b3757cf3c2b6e8cf58ea7

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bcbf2687b436593f4e03ba73f57dd72fc6a7414d88db57e91f4c24f6e62ee45
MD5 4c2e2c6ded8499a34efc0fadd818f9df
BLAKE2b-256 2b89d8ce2f6eab2914a5091360f94fc52cb6f93b1e3852f1aa86dbba9833e20f

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c2be3884b28d24a3be103a5c285902f06eee85c076be57c62c9c5eecbe15d4d
MD5 19ad3fa4acf0183670ef2b8b0a80a67d
BLAKE2b-256 ed56ca425991d21e4b4e4b0a72276a77678201a92d5609acbb27ad7a05ddfce6

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a76c998ddf4d39f895b830a3ccc41d1df2d0454c74fc5e53844db119658e71a7
MD5 5a94522365b4496bd762d51cc12cc7f2
BLAKE2b-256 62a72b69296c200bd59550cb6ee292d8ba6739ea2d847e10d38452d86120bb45

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 72cc339cb7775f82516c36fe8e9a70e9f504214a8d0ed06246332f53203b89f3
MD5 032e7a03820b68df075523b01fa38131
BLAKE2b-256 8dfc1ca195f0fe524e3ffc12ac81c07f3cc3ce144499b4e3ec5e73a52167253f

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a673180dc5226bf3c84baeeadf36d9a4f1ee82e679dcd92776651f8ffcc09287
MD5 5560bf866caf602ff4b16af407139909
BLAKE2b-256 0f435ea198ff05ba3c1f904a1118b23f1b36b0c60f16b15af791a3ab4ccee752

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 40e6cecb8656b6694e845d9319c5c3aaa083f754e992db6065f18806474685c1
MD5 aa43fc52fdb6effc03cb2be5d8d00cf5
BLAKE2b-256 c9370c25e113ae8a148201d60050f26efeada54f46e8417bd35082b40355eac3

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9aa0c1dad8d00c242718c5dbb9f8cf1876ea099ee55c1c0634a8beecb589164
MD5 17ae9cdb0e224d999d8430921af4118e
BLAKE2b-256 af8756bbb0be6d6c49c9b1705f56bad3f4319f8cdbc546f79e811ac88bdfe2cc

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a76731c0d876cff25cc2896ef9d80c54167f5aff7170f12b89db6a9b898fc714
MD5 6597533543708484a645d84131ef7e26
BLAKE2b-256 ce6f9201d36b6775ec8dc3f7d4cc10e32b35b2012683b520d0cf83b0cb674866

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bfc80979ccb2e11bf5e93996db7f1f486c9d3ef4a15c18f1f1bc37aaa4b2a038
MD5 e324c66d564fadb9ec69aa2775348df0
BLAKE2b-256 000cfaca927b0575482d567eda4fa65ffe5ebe1ac04b6c5f0321faeb490d5b8e

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 65b3e2bb6b2083dfdd6a611e4b07d058ca6625f838088b5cb0897335c4580e6d
MD5 ab4110a8ad419dd01a408106d1f4a142
BLAKE2b-256 fe88ac2dc472e9d054e3edbce9a5d1288bab447fc080d5a0d85984455cf66808

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 516e67cd3fd2d14c58c9d2b593f50ac23aff3874406c325ba2589a9c989862ca
MD5 27cec9a5b4d466a4bab9778f5a792907
BLAKE2b-256 4af476a267c596c0a9849241efc91ffb9791fd8b6d818b594d38ce0a322215e7

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bfa6571373244a9e3a4a1f59919b8a41979a997b92be3db0219400d8c6e96d20
MD5 e1cdc0ceddf15593b42aea2f01db0c57
BLAKE2b-256 6243765df9fd6ea2f6fffc1fd757e28e4736568abf9ff1789471d3d8d7dc9ad8

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0208fb7bf40edca3f8cfcd9d1acdb95798abc10b685341b39557f59eb5bd862e
MD5 da1ab844bc9ef959dd8b1b0c78da6e1e
BLAKE2b-256 94425e8bc5277891797e3207a02ab12db3b2ae7159a45aae917a510c690c5880

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 470111ef1b213bc75b3602e14153c3e70a1ebe0fe4b069a7800557685080c477
MD5 e964f1c854928f6ada4ed3aa4fc88249
BLAKE2b-256 ce27820dc70c6d4b23fc43187113a9386d4f8702c162f4387f459dfc5063ee63

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7cde9ce8f42b6a05930dd9b5d0da1b4420d1e8db53faaa41c6732ce7a1670c4a
MD5 d7a37cfa34428c92e470466f6f55513b
BLAKE2b-256 fc99011c7edd1c7971ca4a5c2e545a99889716d907498e25f96e1055c1a9c49f

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e78a462b397c9a11e876a7fd8198d77d35b8bbe849a8d329c518962bc8463ad1
MD5 b0fa66667e0e88968fa49f8a2ca6a447
BLAKE2b-256 f50e8baa3ec5ab48408c1ad7d2d4a9ecba07a4a7e16392b8e0d3480fe88b0285

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dd8640866011c7dd346d8c9cf9ad0438de16d56788c13b12c96ecb38c5c7df9d
MD5 42567df6ace2a1cbb616b1e0aec7b178
BLAKE2b-256 c3b95c69df548b19fc2a20d5990f32023db4483cef43a263d775ba7e08bda00e

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a8a0500c0de3012fda530e12b6c62d27278f7d6cce21008b9208895dfd337201
MD5 e2cb6ee8d91626c6243bf43ba98ed618
BLAKE2b-256 fa4dbe6af6e5cf0bdef5b55d640852a47946a7f044c6fcad989e81619ebb46ab

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 95c2f6b2dea71385bfddf525cc14c9d8bf261f7aa98cbd65155dbaa0764f6cd9
MD5 220d80ba9781ee55eba69c01a022c366
BLAKE2b-256 4ef2abc65ff28286e4997c02d3d83f1236b72595c3e5ba9d3ba39274eab87eed

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 62aa8ddfb0e8f4d0e3e1e214e19e0de11b8ea1e34bf7752dfd987e6e9e3b1264
MD5 b6600d4a85075c62008e3b018bbcfe18
BLAKE2b-256 fe8736c48c4af91ab732a09bfe06392df664b30ea780523d719e1be7819ec622

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c13fcd9071147a377b587f590887751d85874df677ec5ed72ccdf3f7a19446a
MD5 10d46e19cb4f22c0779fa07b429f0516
BLAKE2b-256 c3ccb97554d566ca9a3b02645e5e8cb6047e80ee9409bc03f8924ee64e3eba4f

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 52c53f8c94c48b3f047ab488e9ea41ce8dbf6897c2c1f353cb8a79b22cb4a22b
MD5 204a4aae36792194365ad6eec5a89a16
BLAKE2b-256 f0a5d3a92c4904207a2429de4c336b806cb1137ac86d96d053b73a9ed8b3d6ba

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d33a1d7894509556efb6a41f2ad530257d67a094a039e3b5a047a22934a951e
MD5 64bbf086b57509a2038b158b00ab2bd6
BLAKE2b-256 381638fc321557d86be3542e63ab0c54eef4807c43a16e4d102b85fab64716d0

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 177e9545aafd7359c44e7935b995b0b0f9b08704a78f53e7840a7125d2d1fc9e
MD5 ece3adf43dcc4024872d5abf07c3fa86
BLAKE2b-256 9d130146b96195819f528ecf3f77e0dd58054c321076468746fc67687c20ff19

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 410094c1cfd665f9fbaec94ca9c660d8b7d1366ec255a780d9538e70f45b73d4
MD5 536407c919a84906f3626ec3af0b1cbe
BLAKE2b-256 e216d7028c92cfe703d91d86c77e1910aad9550e1bec97cc1d2be41e403dbee5

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f1bb68eff79d27c01e4aa2ad7c4c5601620d4efdd92264987503a5ee9b984289
MD5 4f3bc622ebeaf32e28c675400db7aada
BLAKE2b-256 5ca976b9588798eaa7c0d8896c22817ad6e2b544e9c60b65b97d9778f15f29fe

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 27538af95f5fd7dd58bea05bf9c2c2a6081954ee6c34657e868a6c209e79991a
MD5 0bb3ccd67b26b3e7a9230259ea4f68dd
BLAKE2b-256 c50219843b6fb4aed7e3d1864c7980431060a96eff3ea25fb0fd6550603b5cbf

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3ff7dc2dbb07f24ccbf2fe192a7ead06211d4131c272f260da1cfe4a9d3f99b
MD5 1848a4318a717b62066219a0eb4e77dc
BLAKE2b-256 a79410ba5eccd29c645db8a31b4db6f4df37c21fffe49ed0a7b1fc88d7edc597

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bfcf551119e07e700279327ea2779a71126fc1094085f6783698430a29db8c2c
MD5 565ca41025fbc1eb0dbd0554da20d89e
BLAKE2b-256 ab4bfc57c14b428304f3f8048444b9d78a076e3afbb4b7bc89a13167af31aeff

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c53a43d08c35161168272bc8d2644cab035cd93d994b259bb1477032ac50427
MD5 1f79b22f65c196660b1cd4f786f0dc96
BLAKE2b-256 f9d36e8623e3b242515245e9cec39fd15097fdfb8ae6d36b58afa72531ba4147

See more details on using hashes here.

File details

Details for the file datasketches-5.2.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.2.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bd76252d5b34d1fc519f183582c69c49a7cb18e1790568eb176d8d7f73233f40
MD5 d18b3ba7f74e81f85f0cd3e2cff95d3e
BLAKE2b-256 5eafa4491c8d61edc7f333087fff2e1203d46b6249a6c2a89e42cdb233d6fd1c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page