Skip to main content

The Apache DataSketches Library for Python

Project description

Apache DataSketchs Logo

The Apache DataSketches Library for Python

This is the official version of the Apache DataSketches Python library.

In the analysis of big data there are often problem queries that don’t scale because they require huge compute resources and time to generate exact results. Examples include count distinct, quantiles, most-frequent items, joins, matrix computations, and graph analysis.

If approximate results are acceptable, there is a class of specialized algorithms, called streaming algorithms, or sketches that can produce results orders-of magnitude faster and with mathematically proven error bounds. For interactive queries there may not be other viable alternatives, and in the case of real-time analysis, sketches are the only known solution.

This package provides a variety of sketches as described below. Wherever a specific type of sketch exists in Apache DataSketches packages for other languages, the sketches will be portable between languages (for platforms with the same endianness).

Building and Installation

Once cloned, the library can be installed by running python -m pip install . in the project root directory, which will also install the necessary dependencies, namely numpy and pybind11[global].

If you prefer to call the setup.py build script directly, you must first install pybind11[global], as well as any other dependencies listed under the build-system section in pyproject.toml.

The library is also available from PyPI via python -m pip install datasketches.

Usage

Having installed the library, loading the Apache Datasketches Library in Python is simple: import datasketches.

Available Sketch Classes

  • KLL (Absolute Error Quantiles)
    • kll_ints_sketch
    • kll_floats_sketch
  • REQ (Relative Error Quantiles)
    • req_ints_sketch
    • req_floats_sketch
  • Frequent Items
    • frequent_strings_sketch
    • Error types are frequent_items_error_type.{NO_FALSE_NEGATIVES | NO_FALSE_POSITIVES}
  • Theta
    • update_theta_sketch
    • compact_theta_sketch (cannot be instantiated directly)
    • theta_union
    • theta_intersection
    • theta_a_not_b
  • HLL
    • hll_sketch
    • hll_union
    • Target HLL types are tgt_hll_type.{HLL_4 | HLL_6 | HLL_8}
  • CPC
    • cpc_sketch
    • cpc_union
  • VarOpt Sampling
    • var_opt_sketch
    • var_opt_union
  • Vector of KLL
    • vector_of_kll_ints_sketches
    • vector_of_kll_floats_sketches

Known Differences from C++

The Python API largely mirrors the C++ API, with a few minor exceptions: The primary known differences are that Python on modern platforms does not support unsigned integer values or numeric values with fewer than 64 bits. As a result, you may not be able to produce identical sketches from within Python as you can with Java and C++. Loading those sketches after they have been serialized from another language will work as expected.

The Vector of KLL object is currently exclusive to python, and holds an array of independent KLL sketches. This is useful for creating a set of KLL sketches over a vector and has been designed to allow input as either a vector or a matrix of multiple vectors.

We have also removed reliance on a builder class for theta sketches as Python allows named arguments to the constructor, not strictly positional arguments.

Developer Instructions

The only developer-specific instructions relate to running unit tests.

Unit tests

The Python unit tests are run with tox. To ensure you have all the needed package, from the package base directory run:

python -m pip install --upgrade tox
tox

License

The Apache DataSketches Library is distrubted under an Apache 2.0 License.

There may be precompiled binaries provided as a convenience and distributed through PyPI via [https://pypi.org/project/datasketches/] contain compiled code from pybind11, which is distributed under a BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datasketches-3.2.0.1.tar.gz (566.8 kB view details)

Uploaded Source

Built Distributions

datasketches-3.2.0.1-pp37-pypy37_pp73-win_amd64.whl (388.6 kB view details)

Uploaded PyPy Windows x86-64

datasketches-3.2.0.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (473.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

datasketches-3.2.0.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (492.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

datasketches-3.2.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (482.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

datasketches-3.2.0.1-cp310-cp310-win_amd64.whl (389.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

datasketches-3.2.0.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (474.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

datasketches-3.2.0.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (493.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

datasketches-3.2.0.1-cp310-cp310-macosx_10_9_x86_64.whl (483.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

datasketches-3.2.0.1-cp310-cp310-macosx_10_9_universal2.whl (483.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

datasketches-3.2.0.1-cp39-cp39-win_amd64.whl (369.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

datasketches-3.2.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (474.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

datasketches-3.2.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (493.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

datasketches-3.2.0.1-cp39-cp39-macosx_10_9_x86_64.whl (483.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

datasketches-3.2.0.1-cp39-cp39-macosx_10_9_universal2.whl (483.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

datasketches-3.2.0.1-cp38-cp38-win_amd64.whl (389.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

datasketches-3.2.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (474.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

datasketches-3.2.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (493.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

datasketches-3.2.0.1-cp38-cp38-macosx_10_9_x86_64.whl (483.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

datasketches-3.2.0.1-cp38-cp38-macosx_10_9_universal2.whl (483.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

datasketches-3.2.0.1-cp37-cp37m-win_amd64.whl (387.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

datasketches-3.2.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (474.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

datasketches-3.2.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (493.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

datasketches-3.2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (472.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

datasketches-3.2.0.1-cp36-cp36m-win_amd64.whl (387.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

datasketches-3.2.0.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (474.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

datasketches-3.2.0.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (493.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

datasketches-3.2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl (472.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file datasketches-3.2.0.1.tar.gz.

File metadata

  • Download URL: datasketches-3.2.0.1.tar.gz
  • Upload date:
  • Size: 566.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1.tar.gz
Algorithm Hash digest
SHA256 70bf858c825cfce16241c0226aa16fb69839949c7798a6554f5258543c64b504
MD5 e0011952eaccdd65a47ea5e755cd8d5b
BLAKE2b-256 f20e6395020f6fbb84d399ed10f07dd38f13fb7279e32d5e0731361d0a519840

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 388.6 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3d6c2abdb5ed7239634c08817313d3444e26df9fae44bf26b660efcad4cf712e
MD5 307cdbb2b01d3827db5bd6cbedf86dcf
BLAKE2b-256 6b8c2b0b8a0552b5690d54477aadf7570384a531481a1733f408b288f1ab9390

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 36cb73564a46396cb50d36472cfa75b00b555b9456bc9b67fb0dd732486bfe74
MD5 c289603c29b4a4967518ae64edc382cb
BLAKE2b-256 7c1d0845f2e08c0b7b7d6c79b378745a9223e42550a13ab7c24bd129236f7dd6

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 844a0d6a67372dab86e727071829c50c9fd485d2fac637038c06cf5350b061ac
MD5 2d617dac9f3a3a7a62afa51f7e1ef8bc
BLAKE2b-256 51c7c617335469f44e7ae72abe27ab0b1ee1713f5f6fcefea7044283814f9ee8

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 482.5 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3709470d61e16aac8896d71b49789bbfd2fa2c17e956dc37d83377c8adcb9045
MD5 fe66c60486078bd8f96d34b4bee906de
BLAKE2b-256 036982f2ec60c25eab3950baf276f3dab8119276bca4e538a93f62c1d8701919

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 389.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aa0aaecc9c9e5a881fb12f8c1d1434303e1203f255e952e95466e3756b447621
MD5 e251f1e000dd66502ba61ac08657522b
BLAKE2b-256 af1b9b545eb301df8b1362efd61d47a8aa16e83b901c79c15e0affa290d824fb

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 32257181b19e006f4660f8c137fa99a059012f50bc610c89bb17d1fd8cf00f09
MD5 2ec952d01c5003023f2860fb4ecef6c0
BLAKE2b-256 9c1e2d0580aac7476bd44711fc93373d1ee2dcb016317deee55b204d06e35499

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 452a5c5b939874ccb9a33f5d4f259e7d8306b0174140efd991ae58b39bd4821e
MD5 78f261b7bb2a4a6669a8ce04b385abfa
BLAKE2b-256 998517eda272cbab0e7f84073e1e272246185585a9ff29c2484544d8f3744c8b

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 483.1 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5f5db2c8dcce3139d9893cbadb6d922ef8585e99c60389414baca4cf8ce680f
MD5 a0b91caefc416ef48be82b2e96504e6b
BLAKE2b-256 7c471250bd724b4faf48d7f974a8e69ac4caa1c49acbcbebce7692302e5bd889

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 483.1 kB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f3c20d06d7d883db6e869b2490fe13c899b1426b62d9a1737ec6609c5fbde3be
MD5 0e30233f9ccae8cc0576b6092b9e3327
BLAKE2b-256 c37d09313996771f787266bdd72e3f8bb5ce5af013e1f15fab552a648af92347

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 369.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 64d23dc9cd8877e636722b45525521fa9fd3fcb4cb01fb30060cdb681a04a10f
MD5 54e326cf7f092380abee379b66b4021b
BLAKE2b-256 f22ed4605f2059ee5de6dc5dab0b57134a1896a6d3831156de30acaac56de1d8

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5badea6c9b43c15159e1db4de5ef18236dd90ef949d2f1d2babb812c0826fd8a
MD5 792cdd971866492de847d49d9260b6a9
BLAKE2b-256 5b935a52e69a9e528d86985f1c992c51b92e7d20fcb5bc51f620b37c339e9bfa

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9357d394661ac67b2e5af790dc517cdb0c393fc81e25b635130bf08ae7920c7a
MD5 f29a57d91e8255e9292a76df91244f90
BLAKE2b-256 96fe62ba437138c2b9342476db8a606b239c4c49b6744ceb12d255064379ebb7

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 483.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 447ddd27e4695563d23720646b1a162ca5f2c566276a835361162a3d5c4cd894
MD5 1346cbcc35733c57d6e464cd7fc614ca
BLAKE2b-256 534eed52125725e8f0b9bbf360748c9b7dfcd4f4ca61027fa7831cf2c46713a2

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 483.2 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bc486eb71c7919733936488b7d2a816dbf74e5b119e61bbe420d3ee7ba87b195
MD5 26472d283fbeb89e9c4ac69a278550e4
BLAKE2b-256 d6c30fc3b3797ba3b8f0c52a8ebc4e86121513285e3d46c35b60d0c870fb93fc

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 389.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8aff1ee9a7b753bb2bb22f8128691a0c11877003b6b85f470a9961fc10c28bfc
MD5 6d1a6fba2a469ae4ad92d2467f6a2a59
BLAKE2b-256 61490ccd8980239baa1be646de87c63ab3c58b4041083a04672ee33bb5088ef9

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b6164ffde56982e478ba1292299ff8f9c9f6a3a00bbf040c115dd8ead5bec7e4
MD5 156efa48d473d42159658f07e744c070
BLAKE2b-256 704c6bcaa521e28fe80c8dcd6a8ded22ee35bde8ebc0337405a538eff4d2711b

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 19a36b8ad48686c74d2bc325ff53d2cad80d11eb40f3a40168bcbb23f6f00ea7
MD5 173e86ba5e9eef6ddeb92a182fc98c4a
BLAKE2b-256 066f23b95d32a7ced699149d489601cadb9e9ce6027012581020cc6ad9596a0b

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 483.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63b950ce3df908e58e73f47c83bf200b0776db976d54d3fc9f38d4d6adbe09c5
MD5 fd9a08a70b64c21f95adef3a56588b06
BLAKE2b-256 8bd6a8293320f1bba7e66a3fe418a210415fb48ad0db9cb79852e700b035e2b9

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 483.2 kB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 720cb8a0657c287573c21086843fadc89d014c904da0e709482f8fac42d9f3b3
MD5 dc3392d57a014feff8d5ef4a9ff6a535
BLAKE2b-256 e0729579872f22c1c0ff02a35ba49b2b7f0b76d9be11abf7d903e789013d6b2e

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 387.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 83aec8c1acac9128b6a54a51c8e27f107b642fda06567a178626850c7df9403d
MD5 81b0d28fc0ed1a56faa946f2587e48e3
BLAKE2b-256 36d3238efa4df7e9256e46b93f814d826a79d1831122988f87ed30b3ca72afda

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 414a1609a7e9dbada9c610579e5d4c788e053ef974d922d6077a63fa7ad98ff5
MD5 bc925ae9d10066b7f0d10e8c2ad07efc
BLAKE2b-256 8b2d5ec527797a4674ee98c56212f5d4f1d5da61442e110a8138bb6e15d4673a

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e851ac411c0739bbd5e218eaf67cc9cc1eb6139cd51b8898b231aaf7793e0b9f
MD5 02dac47c8541a8b6aab48b60ef8e5f6a
BLAKE2b-256 1f47ccbf138fc6649b43e9332d35340d8d91880de5fd082905566f28937c44ab

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 472.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 06bbab4d14f152197640d02a9733a7a3cb05077ddf3d8d4756d355ee5a749f8b
MD5 104fe5c6335fc3a8ea0c277d1ad9b02c
BLAKE2b-256 cf603a0feb659fc4d220788a9bb5fd4deca956c1bb15e55b3963a729a0179ed5

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 387.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0ce68c32e39018cb3ead750405334a9c66963ccc152b91aca7c4be8de6fe1bd9
MD5 6bfaf2d1593f6e848b92c4e256fa2164
BLAKE2b-256 0cacca2749d015b8beed31abccba32b1108282492a4a8451bd5fac760c69136c

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9c28c860f56a9e67f3510e13e895a419e75517bed9dedc7c9e28ea879e32608c
MD5 7f76c2efbb13b0dd376d98f168c2f946
BLAKE2b-256 7c67755cdbc765e4a60ffb4c978a8b160c11b4cee492a664e2e03a6c1851adb3

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.2.0.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a0d61d6eb59ef2c85dfdd376862fa370e7b0c2ccc062871300293c0beb8835a7
MD5 1302497b2bfcf9190babb57b7a4037f0
BLAKE2b-256 e4ca228810a9003360da8e008d91ccc67849615963b1d88052ccc5ab3642d15c

See more details on using hashes here.

File details

Details for the file datasketches-3.2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: datasketches-3.2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 472.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for datasketches-3.2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27bc5a36b104ad6ae74d40c007e196a22378f045d3535334069a3c3b5702c349
MD5 3f676f93fa18f709c868a1f25a84120e
BLAKE2b-256 8b98057660c4ef53dc353d6e38e30a4305eeb21f940f82a6593fb7d496835297

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page