Skip to main content

The Apache DataSketches Library for Python

Project description

Apache DataSketchs Logo

The Apache DataSketches Library for Python

This is the official version of the Apache DataSketches Python library.

In the analysis of big data there are often problem queries that don’t scale because they require huge compute resources and time to generate exact results. Examples include count distinct, quantiles, most-frequent items, joins, matrix computations, and graph analysis.

If approximate results are acceptable, there is a class of specialized algorithms, called streaming algorithms, or sketches that can produce results orders-of magnitude faster and with mathematically proven error bounds. For interactive queries there may not be other viable alternatives, and in the case of real-time analysis, sketches are the only known solution.

This package provides a variety of sketches as described below. Wherever a specific type of sketch exists in Apache DataSketches packages for other languages, the sketches will be portable between languages (for platforms with the same endianness).

Building and Installation

Once cloned, the library can be installed by running python3 -m pip install . in the project root directory -- not the python subdirectory -- which will also install the necessary dependencies, namely numpy and pybind11[global].

If you prefer to call the setup.py build script directly, which is discoraged, you must first install pybind11[global], as well as any other dependencies listed under the build-system section in pyproject.toml.

The library is also available from PyPI via python3 -m pip install datasketches.

Usage

Having installed the library, loading the Apache Datasketches Library in Python is simple: import datasketches.

The unit tests are mostly structured in a tutorial style and can be used as a reference example for how to feed data into and query the different types of sketches.

Available Sketch Classes

  • KLL (Absolute Error Quantiles)
    • kll_ints_sketch
    • kll_floats_sketch
    • kll_doubles_sketch
  • Quantiles (Absolute Error Quantiles, inferior algorithm)
    • quantiles_ints_sketch
    • quantiles_floats_sketch
    • quantiles_doubles_sketch
  • REQ (Relative Error Quantiles)
    • req_ints_sketch
    • req_floats_sketch
  • Frequent Items
    • frequent_strings_sketch
    • Error types are frequent_items_error_type.{NO_FALSE_NEGATIVES | NO_FALSE_POSITIVES}
  • Theta
    • update_theta_sketch
    • compact_theta_sketch (cannot be instantiated directly)
    • theta_union
    • theta_intersection
    • theta_a_not_b
  • HLL
    • hll_sketch
    • hll_union
    • Target HLL types are tgt_hll_type.{HLL_4 | HLL_6 | HLL_8}
  • CPC
    • cpc_sketch
    • cpc_union
  • VarOpt Sampling
    • var_opt_sketch
    • var_opt_union
  • Vector of KLL
    • vector_of_kll_ints_sketches
    • vector_of_kll_floats_sketches
  • Kolmogorov-Smirnov Test
    • ks_test applied to a pair of matched-type Absolute Error quantiles sketches

Known Differences from C++

The Python API largely mirrors the C++ API, with a few minor exceptions: The primary known differences are that Python on modern platforms does not support unsigned integer values or numeric values with fewer than 64 bits. As a result, you may not be able to produce identical sketches from within Python as you can with Java and C++. Loading those sketches after they have been serialized from another language will work as expected.

The Vector of KLL object is currently exclusive to python, and holds an array of independent KLL sketches. This is useful for creating a set of KLL sketches over a vector and has been designed to allow input as either a vector or a matrix of multiple vectors.

We have also removed reliance on a builder class for theta sketches as Python allows named arguments to the constructor, not strictly positional arguments.

Developer Instructions

The only developer-specific instructions relate to running unit tests.

Unit tests

The Python unit tests are run via tox, with no arguments, from the project root directory -- not the python subdirectory. Tox creates a temporary virtual environment in which to build and run the unit tests. In the event you are missing the necessary pacakge, tox may be installed with python3 -m pip install --upgrade tox.

License

The Apache DataSketches Library is distrubted under an Apache 2.0 License.

There may be precompiled binaries provided as a convenience and distributed through PyPI via [https://pypi.org/project/datasketches/] contain compiled code from pybind11, which is distributed under a BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datasketches-3.5.1.tar.gz (555.1 kB view details)

Uploaded Source

Built Distributions

datasketches-3.5.1-pp39-pypy39_pp73-win_amd64.whl (413.4 kB view details)

Uploaded PyPy Windows x86-64

datasketches-3.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

datasketches-3.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (620.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

datasketches-3.5.1-pp38-pypy38_pp73-win_amd64.whl (413.6 kB view details)

Uploaded PyPy Windows x86-64

datasketches-3.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

datasketches-3.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (619.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

datasketches-3.5.1-pp37-pypy37_pp73-win_amd64.whl (413.4 kB view details)

Uploaded PyPy Windows x86-64

datasketches-3.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

datasketches-3.5.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (619.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

datasketches-3.5.1-cp310-cp310-win_amd64.whl (413.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

datasketches-3.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (582.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

datasketches-3.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (627.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

datasketches-3.5.1-cp310-cp310-macosx_11_0_arm64.whl (552.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

datasketches-3.5.1-cp310-cp310-macosx_10_9_x86_64.whl (598.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

datasketches-3.5.1-cp39-cp39-win_amd64.whl (413.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

datasketches-3.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (581.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

datasketches-3.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (628.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

datasketches-3.5.1-cp39-cp39-macosx_11_0_arm64.whl (552.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

datasketches-3.5.1-cp39-cp39-macosx_10_9_x86_64.whl (598.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

datasketches-3.5.1-cp38-cp38-win_amd64.whl (413.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

datasketches-3.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (580.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

datasketches-3.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (626.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

datasketches-3.5.1-cp38-cp38-macosx_11_0_arm64.whl (552.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

datasketches-3.5.1-cp38-cp38-macosx_10_9_x86_64.whl (598.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

datasketches-3.5.1-cp37-cp37m-win_amd64.whl (407.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

datasketches-3.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (595.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

datasketches-3.5.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (644.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

datasketches-3.5.1-cp37-cp37m-macosx_10_9_x86_64.whl (583.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

datasketches-3.5.1-cp36-cp36m-win_amd64.whl (408.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

datasketches-3.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (595.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

datasketches-3.5.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (644.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

datasketches-3.5.1-cp36-cp36m-macosx_10_9_x86_64.whl (583.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file datasketches-3.5.1.tar.gz.

File metadata

  • Download URL: datasketches-3.5.1.tar.gz
  • Upload date:
  • Size: 555.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for datasketches-3.5.1.tar.gz
Algorithm Hash digest
SHA256 8be050446bb557627cd66b380e9e08d1fbb52869c6d47d9c07084f47402a268e
MD5 c0c8cc6014eb8c95af330079a4e8c3c2
BLAKE2b-256 ed1531a902b8a27e350ae083772b356242b9294a8e8fe113d066f1149fa1d201

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 37789a7331ea56f56f3f438f6a7104c19a3657d39cf115e2e3d773f33b70b72c
MD5 7a44762abbb9a50c3f1c152bbf16766d
BLAKE2b-256 eb24b7ec93d84fbc573b9cd081fa8445b41700fcb4c9ecbc505ae6094245206f

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8364a8b05ba7d1ced8777a8b83eadd70a9ad90bb75ac8a0fa3bf7a572e993fd2
MD5 a00f2c5730a2dfd45d26fa3bc28b801f
BLAKE2b-256 8ca95a92d9c3e3f1066733da5b5758c0c9e45e3f0d2b8cc044679217e0e93ed5

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 30cacdd517cb477e3e59a84410c59417af326ca6c29838038bfb0a502d4c8178
MD5 f6eb6bddf44bb63e381ea50677d1c856
BLAKE2b-256 64cad4b2231822e09d0aae2991998ab02255131f76b4999889c0c866ff62d21c

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 00d0cbeb04b0aab7cf0b35a100278757fe1468892775b0671e2ca353c7387dd3
MD5 19549d6459f323b43300461eb18577e6
BLAKE2b-256 06da4fb19fa9bb0f7ad071ce543625ef847561bbe374b0144656ac262ca7bf49

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92341af69b9af23ade6e4e47efad1e237c22ab0735fea091ab1831df473fb4a0
MD5 10846600355d1a599723684404c1db08
BLAKE2b-256 744b48ffd7eaa7e067eed11c8faefa19d8c97b81270552c12f6ca5bb64ad70fc

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a51cdd8caa87e797cb01b8e6927677a29106159618b7f9e0a458dd749226d402
MD5 59fa8a5200c55d052beed6545b0ea42b
BLAKE2b-256 bc1629d6cd73c396255f386d6cc1b9dd924af7d0f3a6e74babd7f42b24df8b85

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e83f8103197a91d225bec95da7b987ddf0a9f33bfc89605f51b66fe2a8b98c24
MD5 0673cccb15d198f7d5ffbe4ecf8ab47b
BLAKE2b-256 74457e4324b7072d2da87ba53c23bd8fb9b63823cb30fae70e9d437676d5f6a7

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abbcdef07fb521ae1081e430a5477778f0d12fa6a9d1b833dd9ed60bd4c1f683
MD5 7fd5b4d0118a9531d59c30c131fe1136
BLAKE2b-256 122eb16d960e77dbd0f44525a448137ee9a637bea4b18e569df4271dc5cd0315

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 75e3703d1da4b82f0cbecd91e777379a914575c4e6c9cc92cdf979f7928a9056
MD5 7ed174624e439ebf80de938820792c14
BLAKE2b-256 ef8e86608c8962ad6a1ccb56ede5a4e4366be5961b26a40eda17506e32c6ba85

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ee0b9ab75311c385518079362f39d23c6806b39710bfa9092f638305f300ba3b
MD5 7889e05076c5101f21d095aba9f77f75
BLAKE2b-256 2354182ebdaedefed3e615cde9c0e8ff57506eef105012948d734d0229af2e45

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b5fc51ff1f8c3f45810c94c78808acce63f49724a040385909bfba4c0a1f8f8
MD5 175282cd645b3117d5e28fb3e24757bc
BLAKE2b-256 77c2428df313fd44fd8e8fd2183e58eb2f57371ea31e098a378013130703ed25

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bd2b2fa8ba88feaef1b02fde2025122f3db84285cf65af1f5ede80c70cf208ca
MD5 971933a2262469816041eaca3e89ddcd
BLAKE2b-256 a541d3d9f4455a0a24903f5dae0592c469dff84b600c6f06c6578486b7fb0eb8

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c6cf547c03375636353af16de20981062b34152c0aa67fa5c6ffc153149afd7
MD5 508649ee462e1df6bace84e4c63dc8a5
BLAKE2b-256 6c88979ccba3ff936d54dbc9421557eb5d5952e0269c9cfc69e3544117e86a3f

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88335418de348d60c0da98a2168de947439e59f6024d76e4d0564340c862e111
MD5 a9979a55853a490cc370e40eabdf9780
BLAKE2b-256 fce1311db402656c59d40db04cb89f8017608f0819ce0b885dee676d39fcdd1a

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3c585ac7f386c2315068a08c7067d3b7dba150e823750cf49f5362fa7059a675
MD5 61229a89de76a52a99e13ed41cbea9d2
BLAKE2b-256 c18a752cc5c2c880a1c3dfaf7dc9e65d2129f5596fddf63db4e4f9967054fe9b

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b80a0c4704b8dd08d9c0824dc33b7f467695134db751483d381e3c29add86d4
MD5 14e1cc074b62b7645e4cefc475f4b6c0
BLAKE2b-256 3d9eb5775fb9cb5446872d8d695665db34c69ff924f07d472f3a7b04f8be619c

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 547168ddbf06fa7eaf2c86c0863423c8f1f6004ab8eb4c115def2a95a76a0b53
MD5 5a374b7924b1ed6ee0078f49e64c166c
BLAKE2b-256 60fd662ebc29f2fb7da94c8b11590777d990cedd71b022e0efea874de6e8d560

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3925be675baac71712d8b652c47c2031c3e4afc931029c408805a893dc3ef240
MD5 13cefe8d6028d8b774d73e3c4e0db58a
BLAKE2b-256 36c92d8efedfa59b8eeca509920c5dc58ccb7eb12c16a7c05b5a0b2ff787a2ca

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cde58bfacb73f50ab516d9fb9f80ede517872e00dc50c94c05f9d1e0673d157c
MD5 1cc1b4f3cd98601323b9244518f54fe1
BLAKE2b-256 2b2941c8e1224e2965cfb15a5c14b3c9d09ed42f1045b773a9add5822f8572e3

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3719b6dae5b36013ba08680d5b15c7b6a1974d209ab43200a3e8099205acbd91
MD5 93d25806fa6692a9d69d167d25d271b5
BLAKE2b-256 b194d95d1bef52a5a4e350d6a05bba3f85f283b7deb2013e3d6ef900efe512d9

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3bf2e3f4d2f7d91f5f38500767e63154887f55da5438d1f88970f491387c848
MD5 c857e96a4db96c9a625c61ede9587c55
BLAKE2b-256 f64bd582d000026bbec4ba47ce0b56096a5dfbdad1fc976d15468e1ef223ad77

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e7ba1d95319297cd4842a88f378d7c50ccd9b38cd025e9a595cfd542ede280c1
MD5 f1b367f7e0823a830bccd51884397667
BLAKE2b-256 44fb27e8bb79f96f2b8973c6b48daa2d4f3d2875d9266e32bb312a1c7fdc9499

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8fbcb418781ce79f40f84ec069073c1793e1d47d0e2165e739dcca499ca2507
MD5 d0c0990dcc327bfd8b42b6e9177c1c5f
BLAKE2b-256 c89cc575c6a6297f557cb92cdb64fbacb18a864f35bf697154379ff9bb80a966

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19e7f560496a99a6dfae0c26663f1c2826292191ee7393d8ffc4bbb025fbee3c
MD5 12b71e96d5d50e0937044e5a9c6d6da0
BLAKE2b-256 1780d1b5fb57ba2ed2e046eacf3fb07b532b5bede2d747fead049033ef5ae2fc

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4c3fb86f67ca476f97a61669fe14461a2a94260ed01f55854459afe8b50456a4
MD5 529cd85d85a067b011db6f76a94f6556
BLAKE2b-256 ba2fc031e524c6f134166f01e84e5f6cda46321d3932cdccfce3054f403cd698

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02d3abbb7ac50ce5ccf9c7713724bc73fddcabb944ff718ff1489b9cd8a530a8
MD5 3956d6ce5df7421fca98f07eeba5342d
BLAKE2b-256 261ec9b38687259f7f2e2dae483feb6767c2f85600a0eb492900921ea02f7a75

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dec62371121d7bd23fb5646a284d5d8a81f0217ee06842b3f87ee322342b4b76
MD5 f99b25476ea4df1be45f156d1def26b4
BLAKE2b-256 fb6ec231427b0e5c0f9f9e9583713b4850e4ff1366f5296cc92ea79492d4ee87

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 91a1b93a25664570fbfe61ba830cb9c64b270c717c1b5cd7a58659f0297ecd0b
MD5 9fea75dfaf39446d0a1fe62936a0383a
BLAKE2b-256 7c0a14cc2ecf7a5cafbae68299135ce63f900938286c720121ae32320cbfebd7

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fd23840507015a3981461f5332f997f904cc99c5e469f62b98ed42acd2d08672
MD5 43ebcc1c4d70a41f5d9e8f15a8690d71
BLAKE2b-256 6487480d324d0c6865ef9162df4f1189a1b3d116434ee8dcee69e77dd9bdcbbc

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59ab56a0514f33945b28bea4a92e9079bd4d4c8d54e341be7186c37e0e1fd048
MD5 9cfefc23795b4ad6d238686b7e57e446
BLAKE2b-256 8623cc99d74f352ca2f5d1778ac7a3ce7303e4c3917799700f9019ae2abe2b47

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7e079736544dd84df215db6ff590c6d5fbb2a7404dbd2a48c523592f0f8b56b5
MD5 644e3ac6b88fb9198d8fb092ba41923a
BLAKE2b-256 cbe84437f2a46462a7348eda9a03abcf9c7b6bdadadd5c0bb9d01cb032771979

See more details on using hashes here.

File details

Details for the file datasketches-3.5.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-3.5.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d533f0a50f98fa2c0a0fd9927dea8694bdcb32ea38de5018c64c7747fb47a79
MD5 0d4e8b113bfb82b79a582edad2d0e914
BLAKE2b-256 2cb28dff8a08532e03167cf0d33e440c7ca5f46074750b1d97827726384a3b6b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page