Skip to main content

The Apache DataSketches Library for Python

Project description

Apache DataSketchs Logo

The Apache DataSketches Library for Python

This is the official version of the Apache DataSketches Python library.

In the analysis of big data there are often problem queries that don’t scale because they require huge compute resources and time to generate exact results. Examples include count distinct, quantiles, most-frequent items, joins, matrix computations, and graph analysis.

If approximate results are acceptable, there is a class of specialized algorithms, called streaming algorithms, or sketches that can produce results orders-of magnitude faster and with mathematically proven error bounds. For interactive queries there may not be other viable alternatives, and in the case of real-time analysis, sketches are the only known solution.

This package provides a variety of sketches as described below. Wherever a specific type of sketch exists in Apache DataSketches packages for other languages, the sketches will be portable between languages (for platforms with the same endianness).

Building and Installation

Once cloned, the library can be installed by running python3 -m pip install . in the project root directory -- not the python subdirectory -- which will also install the necessary dependencies, namely numpy and pybind11[global].

If you prefer to call the setup.py build script directly, which is discoraged, you must first install pybind11[global], as well as any other dependencies listed under the build-system section in pyproject.toml.

The library is also available from PyPI via python3 -m pip install datasketches.

Usage

Having installed the library, loading the Apache Datasketches Library in Python is simple: import datasketches.

The unit tests are mostly structured in a tutorial style and can be used as a reference example for how to feed data into and query the different types of sketches.

Available Sketch Classes

  • KLL (Absolute Error Quantiles)
    • kll_ints_sketch
    • kll_floats_sketch
    • kll_doubles_sketch
  • Quantiles (Absolute Error Quantiles, inferior algorithm)
    • quantiles_ints_sketch
    • quantiles_floats_sketch
    • quantiles_doubles_sketch
  • REQ (Relative Error Quantiles)
    • req_ints_sketch
    • req_floats_sketch
  • Frequent Items
    • frequent_strings_sketch
    • Error types are frequent_items_error_type.{NO_FALSE_NEGATIVES | NO_FALSE_POSITIVES}
  • Theta
    • update_theta_sketch
    • compact_theta_sketch (cannot be instantiated directly)
    • theta_union
    • theta_intersection
    • theta_a_not_b
  • HLL
    • hll_sketch
    • hll_union
    • Target HLL types are tgt_hll_type.{HLL_4 | HLL_6 | HLL_8}
  • CPC
    • cpc_sketch
    • cpc_union
  • VarOpt Sampling
    • var_opt_sketch
    • var_opt_union
  • Vector of KLL
    • vector_of_kll_ints_sketches
    • vector_of_kll_floats_sketches
  • Kolmogorov-Smirnov Test
    • ks_test applied to a pair of matched-type Absolute Error quantiles sketches

Known Differences from C++

The Python API largely mirrors the C++ API, with a few minor exceptions: The primary known differences are that Python on modern platforms does not support unsigned integer values or numeric values with fewer than 64 bits. As a result, you may not be able to produce identical sketches from within Python as you can with Java and C++. Loading those sketches after they have been serialized from another language will work as expected.

The Vector of KLL object is currently exclusive to python, and holds an array of independent KLL sketches. This is useful for creating a set of KLL sketches over a vector and has been designed to allow input as either a vector or a matrix of multiple vectors.

We have also removed reliance on a builder class for theta sketches as Python allows named arguments to the constructor, not strictly positional arguments.

Developer Instructions

The only developer-specific instructions relate to running unit tests.

Unit tests

The Python unit tests are run via tox, with no arguments, from the project root directory -- not the python subdirectory. Tox creates a temporary virtual environment in which to build and run the unit tests. In the event you are missing the necessary pacakge, tox may be installed with python3 -m pip install --upgrade tox.

License

The Apache DataSketches Library is distrubted under an Apache 2.0 License.

There may be precompiled binaries provided as a convenience and distributed through PyPI via [https://pypi.org/project/datasketches/] contain compiled code from pybind11, which is distributed under a BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datasketches-4.0.1.tar.gz (560.9 kB view details)

Uploaded Source

Built Distributions

datasketches-4.0.1-pp39-pypy39_pp73-win_amd64.whl (416.8 kB view details)

Uploaded PyPy Windows x86-64

datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (599.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (636.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (554.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (596.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

datasketches-4.0.1-pp38-pypy38_pp73-win_amd64.whl (416.9 kB view details)

Uploaded PyPy Windows x86-64

datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (599.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (635.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (554.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (596.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

datasketches-4.0.1-pp37-pypy37_pp73-win_amd64.whl (416.6 kB view details)

Uploaded PyPy Windows x86-64

datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (599.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (636.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (554.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (595.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

datasketches-4.0.1-cp311-cp311-win_amd64.whl (417.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

datasketches-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (604.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (635.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

datasketches-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (552.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-cp311-cp311-macosx_11_0_arm64.whl (551.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

datasketches-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl (594.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

datasketches-4.0.1-cp310-cp310-win_amd64.whl (417.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

datasketches-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (604.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (636.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

datasketches-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (552.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-cp310-cp310-macosx_11_0_arm64.whl (551.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

datasketches-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl (594.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

datasketches-4.0.1-cp39-cp39-win_amd64.whl (417.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

datasketches-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (605.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (637.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

datasketches-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (552.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-cp39-cp39-macosx_11_0_arm64.whl (551.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

datasketches-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl (594.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

datasketches-4.0.1-cp38-cp38-win_amd64.whl (416.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

datasketches-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (604.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (635.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

datasketches-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (551.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-cp38-cp38-macosx_11_0_arm64.whl (551.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

datasketches-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl (594.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

datasketches-4.0.1-cp37-cp37m-win_amd64.whl (410.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

datasketches-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (609.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (655.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

datasketches-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (562.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (579.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

datasketches-4.0.1-cp36-cp36m-win_amd64.whl (410.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

datasketches-4.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (609.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

datasketches-4.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (654.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

datasketches-4.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (562.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

datasketches-4.0.1-cp36-cp36m-macosx_10_9_x86_64.whl (579.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file datasketches-4.0.1.tar.gz.

File metadata

  • Download URL: datasketches-4.0.1.tar.gz
  • Upload date:
  • Size: 560.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for datasketches-4.0.1.tar.gz
Algorithm Hash digest
SHA256 30831cbca554c58662b6e05701b2c89382c52c8ff3f4f029e8bb7f8d7c044703
MD5 375d896170a705e0239a97360afcce23
BLAKE2b-256 9e7d702404d490fabd8f6397e1a6544211e021d52a31445126139127713be194

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 175b74b8114dac779336e52bfee268337be912ba2924f9ce162ba7f9d53abf9c
MD5 0cec0f1839c62e0aa31fe46920f13367
BLAKE2b-256 61ad043682bea3b08389addcecf5de969596b4710d2238e70198e485cfc9d209

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55753a72d1b2c5491cfdd3cb44a0e9c56a90ea537387339ffde5300a4b6c461b
MD5 5eb13a18565cb12e5cb007952aafe81b
BLAKE2b-256 9565dba3ca0299b4471a79b2a1dbe4e67031894bbfb324b06099b61a7cf6cdb5

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4f03e5fc75877cad981f3814aae4e642d6f71f45689b0d7e45247d35b1eab0a
MD5 8c3cf9bd2168fc109f29797d5c7e7ca1
BLAKE2b-256 594bafdfaa4a789b8997e03e16e9bf1e3d2e945ec085b44001599d6410ecabf1

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff8ad9a517684d5f0459d6456604d2480bb3a72f251a1e67f0d0163cf852d060
MD5 ea19f97c8888e1c81243f66d06963498
BLAKE2b-256 9f06dd4f989023e97f2526d28fbb6b1bb82c94c70153c78c3d1f2ba7baa02982

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e3b7e5a9cc71fcd84b0cec2a37260cfc95b45c715cbc0f85ba47867b4c32c25
MD5 f6e5996a136bae5d32e26fdb97927118
BLAKE2b-256 b2e98c0fbfb45a4a1ebb49877dd2d8fa93863c1dcaae3ddee64c6ea860c1b445

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 83bea82452bb530f1691ff5ec8fff017298864533c9dcb5b36acbcfd279b10eb
MD5 c2ff1c176d8978a25015de9678b73d93
BLAKE2b-256 73fef50ea7a2918361efe9581915465cb8e7d440302ae100365d9842fbf49a71

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d16c073ff8acecb009fe96108cfe15a54cf168bb93bad64ef7b687c24ce696c1
MD5 4bb76e62ee0894f679248090d9c62c8a
BLAKE2b-256 57e179aa0c09742c7ad32cbe1f6ededc0b27fd17476a80693d99b43df1fa1352

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e3929c1d86c1b45697d1ce92d9449779567bb0dea0b4cb655be2817f7d8458c0
MD5 872819627b649469084413367614a017
BLAKE2b-256 2262fd7b2696c8b72b6d2e5ac87b38c4f3c5e2be77fb2a11529cf9451ce4d0f0

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2832292dbc563b23522cfef2ddb19687ee475f430b87bef9a38e709aac9b1e72
MD5 cba944170e5872cad489caa036042b5d
BLAKE2b-256 095f50e0c8d754eea4b239663f2c49537c23fbc25cc7cae8a183818dbc323432

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08910e05a212ceb06a2c1b5ebdcbc2f21fd387e11c38291cf56982a965c7dbf1
MD5 dcbebbaeb1008000eaa5d9da748e56dd
BLAKE2b-256 d104fceb28a830521c9102754cc538e3c519215aa61d2d9131cf8557c0b80c12

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c7bd7c6a7cd7b22195a5a555d51de9329158c9dca9d000178802aab3bbad4e74
MD5 e8499611452d7d1cd74259d90040e878
BLAKE2b-256 592ad34da724034e967877a0f9ba9acca9aced6097887c4aa981a3297b34f2f9

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2147555404e75be325afd2de5fa4eb824c27e8a7040a372a5c8d9c3ba18837f5
MD5 e5986bfdc7a645f0c1d2365ce9d4b767
BLAKE2b-256 57d011c62c18b51a2190692b902e6bd124a2c99a07c6621ef756fe767b6f6800

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 11b7389fe824776c2cabefe45773ab141a99e843e6ce17c5a0c773eda6887e89
MD5 daae0f58a47d2d10f1b354d0dddd8b5a
BLAKE2b-256 8ed7bff0f8936d179adb1ab4cfa1f932aa33d12a547bc92e546336327ee5a03b

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 696a0aa5a10e2af22402a280dcf90514a55eb0438cddeec2cd7f5c9f82f9ba93
MD5 f02382826c48b489158c723805d5e037
BLAKE2b-256 699236ed277a58adb20d3f8d2d6c619efa771e5fb95c4aae959c4079db4edf62

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9606d7bc7b1defee9af6d97fc1333f7c046b8f3c8a3c41f494c287acc7b9eb57
MD5 ff633dc768a8ae2c68182f738e7e7165
BLAKE2b-256 4ed969cbce60c8f61b01418bb3e43e44f0e1554407690834d57735e456ea3152

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0019055edd7b11520ec16c8d79169cad45972ab4d03d245acb5524e25ed1fd6b
MD5 3a417a7829a3e56a71f3950e98e34197
BLAKE2b-256 73329f9f94e9cde09fd5c4a46334c2f23a092def3f221737db5b2b2a20e68dfc

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 360eee83ca14163b568fa68e8b929810c2c17082e91db7db388a69e844af0c82
MD5 c9b5e7721090830ba2dffb059aace0a8
BLAKE2b-256 e92462e3074dfd2017c0f70e37bbea8a9a7d92ab4389c801a5e8e04b3c08cebe

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c8fc557396613fa878260304c4061b240af3e9992eb11f58ce6c8e4ec1d0b18f
MD5 47fde44b318f7218ebf432b02d0e0eeb
BLAKE2b-256 03e0923b197e749137bd6cef97c1a2857696a999247f685188dc112acc79f25a

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 440811885077af43bc1bc908357ae70dbd238153bcb6618cf24e74490eabc53c
MD5 dfce09f96e58cf049f29229d279b157d
BLAKE2b-256 452a557930466cdfbbaf479e7f1b3fd931a0e973ecdc13118e1bdc69ad86b420

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b471681127d4a4dde4aed93b7d6978847a7b66b09efda6c5c52398f1e0b57f48
MD5 b5e8631f843af2f1b79931b09b6b8dae
BLAKE2b-256 fdf7317bb8cc01a642c520e0464be5da73d63924d6a784a8a0a45bb80e2e3105

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c223aede7b630da4e436ea059971caf1820e1af06088d568f057cb94f4d4e865
MD5 d19dce9714fb66c76dd3c126451ab0f0
BLAKE2b-256 bd5104a0de085144e162bf31fffea852451ddec13de8622ffc17fb1fcd73a09f

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c9924a67a6627be841fa06396a621b2b4d066681686c51c8c50f2a7b55afcdba
MD5 975e21778f424523e3ce3a5d069bd263
BLAKE2b-256 437a913e523c706e13224f994dfe75450ab8993a7e9b603276d806720fcb81b0

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c6cfa843052f57add6066c2a7c761e7255371cf808239243706fbfb283f37f8
MD5 a1566c5280dde80a941721592d141c89
BLAKE2b-256 6b7a3c5aab9730670d74ca4c38b40ecffa99f1ecb957adf639c31c7dae31b838

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fccc73499514a168b55b037632d926866b10dc5da136cb298778afd80145d7a3
MD5 b9f610707a62930a9e2c4d88a7baf533
BLAKE2b-256 1158f984118e9e10e6575f6ce0ce8f5b16ec13f1300bf5a23b391169fc215877

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb6f72769576bc651ce3e2ac7b653882ec973ff2ea18124837c7a565c94ac7f9
MD5 41b2439b7462c09c24c3f82afe625dce
BLAKE2b-256 8c5c647380db51a0f237d6e653ee9602aebcb399af8e621321a0ac34dcff43af

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cc63b9d89986ac3e43d6295bd44f0cc26fb5eda04cf061c78e35c555a061b108
MD5 30038d6c0844beb78294b2948424846d
BLAKE2b-256 0d9f400947a2a63a365d2688ed94351d4aa0f27886af0003fa379f2e4c865b02

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c6030c20197e685f1cc06d6e481cb1d13358d4310dae134c1825253e095ae6e
MD5 af4cc556ea20fef81ffd7ee634b5e08d
BLAKE2b-256 f8234204e8a707e6b98b9d540a5b944a7e43055a7c62254d13a6fa2068014832

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cf1c72300d9c563b3848c0f235aa1dc972ddfc0fdb51a056bbe833410d870a70
MD5 1f6af206628ba92591c7cf4a7aab8218
BLAKE2b-256 0a47f59a5d4fd9ed257e28113c29fd9529ee6abbfa0396d7e72c5a4da700e33f

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94f8d3c442532c95e82719a6f6892912d303dab46629e7cc350ac8b88302bc71
MD5 ff0a75bd045276ed8f15ee135c5c4cb8
BLAKE2b-256 8d54e121d865d056309f3bc9a2e49c7ff1bf3b55595e37c071eced988bc4878b

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6788bd98342446c52ee1a443a378dcff93870ad99bbcca24cf2b87085fc42664
MD5 8a9f70fb2d6b72b22f586317b98b446d
BLAKE2b-256 1e3fbad11409321d322d566a598e6d849da915af94992c83db0c0931ee469f0e

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb09d65dd2ce4ae361be2240000ba881806a0b7e436da467c75d2d518452e0a8
MD5 6b377cfcc313beb97b8178b1196b2403
BLAKE2b-256 bf65f203a2d9ffbde5fdfaac1782d51baa250b1add937cb96b2628f48501c26f

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ffffc471703fa5666f2e80439f353eeac8a5eb4da8fb255f0c017342e28dd947
MD5 d477825452957e698b7616a7189f2cc8
BLAKE2b-256 894f561a0caf8913c20b438c0d1750db9ee148283b448b71d8fcc2c8a86fe234

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a4e1ba39e4c72813411b7aa4177065a65c0ed712cb9b1c28e0a28f906819e20
MD5 582ee7e65d44c40d6e242c10c450464b
BLAKE2b-256 8198f615ef6f2a7efb792c028d6eaf881a204f9b8efea50dbcf7cfc4f6e42b9d

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3fd412d255ccb2e4ca76b50fa915bfbecd30d503e90446081ed751090b6be180
MD5 ac1aa8f92df94e9e6a9a8670a3def7ad
BLAKE2b-256 8e73f75a1190ee66136f2799d843340e696e69df37cd6779e94e956a6748c564

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47c01188920e16c4f1da5ae05f3b40febe42bed88a42ef7ff388f98bda77c219
MD5 7ce9e8e05f9dbea6980b123abda22959
BLAKE2b-256 af3c746cfaf68cfacf462f561e9c90f120efaf8bd50a7afed484df907c540233

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 50c6cadfe53ed616b93c446658354660d2f954d9234fe4fd624e587d52bf4693
MD5 bbba58e77c40ae562831f6d4bcc98714
BLAKE2b-256 f0124a4b322422fe22be1075a1837e39807d7fe53a938a0782e59ae8a57df54d

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74bb3568be6752fbfccb05dada72badabcaec03bc8427fc3189ed4d2ad3a5cfa
MD5 170582f52f457de68a863dfce9dac973
BLAKE2b-256 659761e337de4a12a936d7efe8c476b34f462b47814691d798d3e6f0931a7eb7

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49b48e329c9f7bdb3ea2e96de8ecc484e990f7d92fcb2a03f46a9d16bb5c6b70
MD5 06de7f996eed16f6ee75211f1fab5063
BLAKE2b-256 dc97651cd6456eec3a6e95934d97e578bff1575881a882460135581d86c85361

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ea71ea4ad1f8a4f7e9fce56e43f5a6f6b8d33f64a3847a1a29459e01b8da7a8
MD5 af9dbcd7401b7871669f6f17af20ee22
BLAKE2b-256 2e3b597871a447ae2441683dbb7d8e5098e7c30dff83b99bdff70ce67373dee9

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a2e577142b2f05f96f074bd45574b9e290df8d1229ba10c343909c78a6bc7aef
MD5 407f091ccee24d9a630f8cae6bea2dd0
BLAKE2b-256 8b92b314c875be8fe366752e8c8af3bce8aaf487668d64b5bea980f6e80de3e1

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08a39d7bc1b93345c49c1d9ffcf3b3981b3235898f2739f642f7195f8f64bb9e
MD5 981c890e7f24efb637ba381c2883d2e6
BLAKE2b-256 f1a957aaa55c981bffe60577a58ca6afd46a4b56d67f868913aa4644619b7030

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7e68eb806691c77e68d51402dd05583a5d5ed9fa2046255626fefdfd4331ee91
MD5 e7cb9bb3b93a1945061ac300a4e4a294
BLAKE2b-256 21695161522ab8735e8605e18d9cb7ce260c95117ed4ed5b36c6b253207feb28

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c5738678566cf136e1e4915df32cd8bdabba46fd1486d6f4a567b3dcc4a5429
MD5 aca71edcdae4401c1d4cffaf0af1c55d
BLAKE2b-256 de09446d7f78b9b78d0651bf60b27800a74ab62749118d1b07a732a88256842e

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4af848b7084e369ef75be686951405e82223fac9fa36c3a1c375839f4d27d151
MD5 95c9ed2d3f2c80bff4a5d5345603e0d5
BLAKE2b-256 96ac6870c26e16258d456f7347ae4b2fd833082e874301389c6779c69b9c29ba

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 495a64c7e2bf606c44317bd55c2f3031a80b50932751d112ca36cf46d1b8b526
MD5 e1aee8ce61d2b3b7d4deaa09b50dac0d
BLAKE2b-256 84e6a9016ea5763c04afbf45c4bd3578ad4a6a40c7bdcf446f3d3961ed96c571

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f1051b7df788c9362a80cee6604d10680533f462e24cf87089ea6b6359b6d27
MD5 d218f22861e97db46fdfad4ea5a92684
BLAKE2b-256 ef4ac5014ccd0f799c75ef2287b884c702d8644eac93e68ed2ca793c10ce58f7

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8209c7edda38e302bbbd970ba9635cce1dd441c60b95c4d0e38f54e5faa02228
MD5 23130b6a2162fc48cd61b0260f66820f
BLAKE2b-256 243d6be3c6628ef6b03a94fb724c6b152d1eaed6ac347b1117012e2a242e05eb

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37bbe5d633922e974f612464112c4ff4f05f40ee10880c485da33a8ca3e5a690
MD5 6799d2230650e9a9c6645d6403c6cd07
BLAKE2b-256 60dde6a364eac75bfcae4b0346300f6c239eff5599913b7f64eacaac1722aee8

See more details on using hashes here.

File details

Details for the file datasketches-4.0.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-4.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf86a14df284ae830a07cd6bfd806648df9ac4f3d42a67a4319b61d443b51e73
MD5 189f2c3147f93e86f00294f42f51ba7e
BLAKE2b-256 fb3979fee2c8ee99322a732b02fd264463b3bfc1f49ac25e036d3070e45bb210

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page