Skip to main content

The Apache DataSketches Library for Python

Project description

Apache DataSketchs Logo

The Apache DataSketches Library for Python

This is the official version of the Apache DataSketches Python library.

In the analysis of big data there are often problem queries that don’t scale because they require huge compute resources and time to generate exact results. Examples include count distinct, quantiles, most-frequent items, joins, matrix computations, and graph analysis.

If approximate results are acceptable, there is a class of specialized algorithms, called streaming algorithms, or sketches that can produce results orders-of magnitude faster and with mathematically proven error bounds. For interactive queries there may not be other viable alternatives, and in the case of real-time analysis, sketches are the only known solution.

This package provides a variety of sketches as described below. Wherever a specific type of sketch exists in Apache DataSketches packages for other languages, the sketches will be portable between languages (for platforms with the same endianness).

Building and Installation

Once cloned, the library can be installed by running python3 -m pip install . in the project root directory which will also install the necessary dependencies, namely NumPy and Nanobind.

If you prefer to call the setup.py build script directly, which is discouraged, you must first install nanobind and numpy, as well as any other dependencies listed under the build-system section in pyproject.toml.

The library is also available from PyPI via python3 -m pip install datasketches.

Usage

Having installed the library, loading the Apache DataSketches Library in Python is simple: import datasketches.

The unit tests are mostly structured in a tutorial style and can be used as a reference example for how to feed data into and query the different types of sketches.

Available Sketch Classes

  • KLL (Absolute Error Quantiles)
    • kll_ints_sketch
    • kll_floats_sketch
    • kll_doubles_sketch
    • kll_items_sketch
  • Quantiles (Absolute Error Quantiles, inferior algorithm)
    • quantiles_ints_sketch
    • quantiles_floats_sketch
    • quantiles_doubles_sketch
    • quantiles_items_sketch
  • REQ (Relative Error Quantiles)
    • req_ints_sketch
    • req_floats_sketch
    • req_items_sketch
  • Frequent Items
    • frequent_strings_sketch
    • frequent_items_sketch
    • Error types are frequent_items_error_type.{NO_FALSE_NEGATIVES | NO_FALSE_POSITIVES}
  • Theta
    • update_theta_sketch
    • compact_theta_sketch (cannot be instantiated directly)
    • theta_union
    • theta_intersection
    • theta_a_not_b
    • theta_jaccard_similarity
  • Tuple
    • update_tuple_sketch
    • compact_tuple_sketch (cannot be instantiated directly)
    • tuple_union
    • tuple_intersection
    • tuple_a_not_b
    • tuple_jaccard_similarity
  • HLL
    • hll_sketch
    • hll_union
    • Target HLL types are tgt_hll_type.{HLL_4 | HLL_6 | HLL_8}
  • CPC
    • cpc_sketch
    • cpc_union
  • VarOpt Sampling
    • var_opt_sketch
    • var_opt_union
  • EBPPS Sampling (Exactly proportional to weight)
    • ebpps_sketch
  • Vector of KLL
    • vector_of_kll_ints_sketches
    • vector_of_kll_floats_sketches
  • Kolmogorov-Smirnov Test
    • ks_test applied to a pair of matched-type Absolute Error quantiles sketches
  • Density
    • density_sketch
  • Count-min sketch
    • count_min_sketch

Known Differences from C++

The Python API largely mirrors the C++ API, with a few minor exceptions: The primary known differences are that Python on modern platforms does not support unsigned integer values or numeric values with fewer than 64 bits. As a result, you may not be able to produce identical sketches from within Python as you can with Java and C++. Loading those sketches after they have been serialized from another language will work as expected.

The Vector of KLL object is currently exclusive to python, and holds an array of independent KLL sketches. This is useful for creating a set of KLL sketches over a vector and has been designed to allow input as either a vector or a matrix of multiple vectors.

We have also removed reliance on a builder class for theta sketches as Python allows named arguments to the constructor, not strictly positional arguments.

Developer Instructions

The only developer-specific instructions relate to running unit tests.

Unit tests

The Python unit tests are run via tox, with no arguments, from the project root directory. Tox creates a temporary virtual environment in which to build and run the unit tests. In the event you are missing the necessary package, tox may be installed with python3 -m pip install --upgrade tox.

License

The Apache DataSketches Library is distributed under the Apache 2.0 License.

There may be precompiled binaries provided as a convenience and distributed through PyPI via [https://pypi.org/project/datasketches/] contain compiled code from nanobind, which is distributed under a BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datasketches-5.0.1.tar.gz (51.1 kB view details)

Uploaded Source

Built Distributions

datasketches-5.0.1-cp312-cp312-win_amd64.whl (460.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

datasketches-5.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (685.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

datasketches-5.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (749.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

datasketches-5.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (622.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

datasketches-5.0.1-cp312-cp312-macosx_11_0_arm64.whl (535.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

datasketches-5.0.1-cp312-cp312-macosx_10_14_x86_64.whl (595.8 kB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

datasketches-5.0.1-cp311-cp311-win_amd64.whl (458.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

datasketches-5.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (678.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

datasketches-5.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (740.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

datasketches-5.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (624.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

datasketches-5.0.1-cp311-cp311-macosx_11_0_arm64.whl (548.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

datasketches-5.0.1-cp311-cp311-macosx_10_14_x86_64.whl (608.9 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

datasketches-5.0.1-cp310-cp310-win_amd64.whl (458.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

datasketches-5.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (678.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

datasketches-5.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (740.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

datasketches-5.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (625.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

datasketches-5.0.1-cp310-cp310-macosx_11_0_arm64.whl (548.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

datasketches-5.0.1-cp310-cp310-macosx_10_14_x86_64.whl (609.3 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

datasketches-5.0.1-cp39-cp39-win_amd64.whl (458.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

datasketches-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (679.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

datasketches-5.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (740.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

datasketches-5.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (625.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

datasketches-5.0.1-cp39-cp39-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

datasketches-5.0.1-cp39-cp39-macosx_10_14_x86_64.whl (609.4 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

datasketches-5.0.1-cp38-cp38-win_amd64.whl (458.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

datasketches-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (678.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

datasketches-5.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (740.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

datasketches-5.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (625.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

datasketches-5.0.1-cp38-cp38-macosx_11_0_arm64.whl (548.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

datasketches-5.0.1-cp38-cp38-macosx_10_14_x86_64.whl (609.0 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file datasketches-5.0.1.tar.gz.

File metadata

  • Download URL: datasketches-5.0.1.tar.gz
  • Upload date:
  • Size: 51.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.6

File hashes

Hashes for datasketches-5.0.1.tar.gz
Algorithm Hash digest
SHA256 5c7a988543c4f4c6c204c1dd325f3a85545492a1bd630699393cd2bb84124a52
MD5 b127f1e2018c1be1c4c022c48ccac1ed
BLAKE2b-256 5be716f95de31754ebf92ed39017b137ab8de1d28e26dfc0b9af64f8f94469a7

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fcf7f30be00c99422611e9b0348ddf47f3186e7dad45c21f0dec48ac2b679900
MD5 e3504288860ffa5575ac1a3f9e434e65
BLAKE2b-256 ef65c0eff11932ce8122c12576d15fdb17a6b61e42f90b8c47ca77e6671e6089

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a16b80d6b2331f6c0bff871af21b2d2ccf58b274bb570adf18e97204dd15f62
MD5 5ab67bd30a6aee9ca10db932f65626a9
BLAKE2b-256 26bc32d170db6f85c79a9f02c56c27fa13550b9ab2bb93d771a83398c782761c

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f71422a385e49f9419ea22a7b59c2ba3fc50be669b40b62b90d8d4354c6a9dcc
MD5 5caec11d6ee191802817388497418a4e
BLAKE2b-256 e2bed8196039ca3d06be984251a18e1fd53ecbdfd72f96f26df01450c2134361

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2746ca3afc0136a034504b090360cb28fd9c478fb903694b5e9032a2100d1b98
MD5 d2e355d90a7998f6ea82842c3d873e12
BLAKE2b-256 9175e81396f54e4e2a4c47e5e432e80665a14a069940debb8c9e4e44498cf825

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8b773cd9a0cf251ff2e0a889d3382946ba9cc47a3df8acaf97ea02bf9de9cec6
MD5 7e7a7f0c0dfc606e9067779c5409eb5f
BLAKE2b-256 2384e401fdfbc8301d3c573714902e2a19795138b7d97da6e9cdda105c726460

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5ddfe9eb4e8ce0aed0b65f6c5d2f0d556f6c4819554882c7c48d0ffce52b29e4
MD5 20b578455c273b677dd188132ceb91c0
BLAKE2b-256 1d075569a58dc8e481eb0c64f53e68294d2d6a79a5f90bba0757a5d51458b63a

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7c16af24b1de004ce5c33ee990b9deef73ce5c79766ade0ef61bf33472ad5adf
MD5 2c00bfc44ac2fb71a086d744e6786b4f
BLAKE2b-256 9a374463053c10cce441a1717cf4841053a5ca32f21cc630c2b76b4f08eb9170

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1254a23f78c51bdbaa2edbae7aafc646ac83c29441f05c6e5b40fc3b7850e0f0
MD5 52755d10f8c47ff3b312addba83c9784
BLAKE2b-256 d82a571c0af4722adbcbcc9dc6d3df6f70cdc851ec92382ce6eedd7b755e7a72

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9eaf63bbdf6417286298c6c7e8e4e943ee0396215da6c22ae0ec30c49053fa2e
MD5 7a33fe4b340f649e172c98cb6348ab36
BLAKE2b-256 c1c0435bbf42bb554517ee0f949239ab844e770c3f0916d90a3c41c697b6dad4

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aec3bbc9e5d1d908a85e01cea7a3d884900b1d6cc1bf0e7a57fa2fbd4708096c
MD5 aed4090d417748c2b036d76c590065ff
BLAKE2b-256 51493eed3f687072e582f3697e9f159a2e2a62990b363c95121bd29f5765d162

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a1df5cedac694897f9d4dc3fef5f14e6cf27de384814cd5d6098aeb481e1072
MD5 57a28544c08218e6349ef0bbb590c00e
BLAKE2b-256 3bc4d6ef2845aac6699477df6604b16f3191ba086ffb65a34e1915c73ff8e80a

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1f4beba30bd0b82af3183501366c2a8a650b71a7b1e104190867068c4a72140c
MD5 72c3d1b5704f8fb62213e726d02d7d7a
BLAKE2b-256 d98d2371a00eb2403e24fe15bfd5f2669e7fd8523e27f766e7256f65d5bd3d7e

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e7b65263a7d50ed7d9091cb0e69e97897ad5c8d46947a0e30ef8907d31aab383
MD5 1fbe7b8222498da48c70a86e0aa1e819
BLAKE2b-256 3fd21bfff8edd9d316e9e8827154fd57b0a4c57c0bc9ce616add120ce5818138

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80d0efcebfc80af8aeba2f763d9ece165628823fcf491316103d36b426cc2473
MD5 b277f6c6af5f0be6dc8432051ab8b429
BLAKE2b-256 fe501a8a837e6f1cfa209899734e5e3720fd013a504590b3000fb342a278c2a3

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ef87d92cb713459dab14200318f0efaf57280f80b6e478dfe6c74a8507b605d
MD5 a233bc1764e5196b850e4257251aebca
BLAKE2b-256 5ed97f35d51ab811407d024034565d371fc46235b8041a0a85bf75a7fcb34943

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e76496f3ffc7e73fab6597b17ab56338374391a32d040e75996e1aedfe997231
MD5 38be05d5c44c8931a8dffe04d2bbd633
BLAKE2b-256 14ab3430eaf97850e93e2555f549c9e215a6f890067e052e1dba5ba10a731783

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b715c91e53cbf72b23759b9f511b0c86b33c168fdc10b790e025a019c78c16b
MD5 3ac948a806004e1bf40e66fb5a6c065e
BLAKE2b-256 f984e110250ef14485b04a84d0a1cc706e54a688fe8b8aacf32e865432f0f793

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bfb0c5e9662747a8d7a546697b688cabff662ec1a0ca64289380e82ac25795ec
MD5 5c49be0f72a252b3692c807b2821e689
BLAKE2b-256 8a0b54ba86896b6707d6faa4195d6fddc7659ec28c6e0ab23201f864455373e7

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f4c7a455359dbad0c1bb82b27de554712311a3857badf8da9634f2bfa0144bc1
MD5 e08139b62ef40cd21ab16bafa48e7294
BLAKE2b-256 d0e7af6a39e6684e612d97706edeb2474565aef68c1ac0a7b21daff57854c838

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed5e43a60da41d142f81416897a0ce73ebd3ebeb25da60660ceae09ee63a2be7
MD5 c1485287d956e2c143910c69613d81ca
BLAKE2b-256 0a3ea79dd0871b8383de4b41ab7156569fb5b29879fc8d8190191e50d52966e3

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f11fc7565c59721e733c14643033a8620dcc8b435b44bba1c34752bca9d3fbf5
MD5 87a9c2b007be586f6437bffe0df13977
BLAKE2b-256 52ce4f675faf896ce6c4b741da0b247a919e340ae5fe4bb34f88c12460749828

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b11eb7731768d248112a9c51648f552e5ee605b750395fbd9cb292b08bf6380
MD5 4860fd2cd8bfdda6bd0dd5cbe4684d12
BLAKE2b-256 050957971ffc25becee857c3b2422fef27c73c5b948433d7c17169dd9918e7af

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 513a978a47c716017ec3ba7310b3aeed5bc6633b34626bd0ffde67c0f3b83344
MD5 79db51f7d40ae4240a4da150d2557afe
BLAKE2b-256 2a7cb737730760d2cfab01b4d7d21d46938d2151205f680792e3e5185e8351c5

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6a43dfa6612f9d9ba69f01d32090cce844e601aeb0eb8f96706cc9f37011a3a4
MD5 9dc473dfb9fd8f27075c6e28e9093d3a
BLAKE2b-256 164f838d42f34bdaa0c44b42cf61ecdb2d6ce22c4d8ee5914ea5abc1e8d45d96

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4815d1e60153fbdb5e84a6b6f86941c9c1f117811be4dae0f03b1dd663fc676b
MD5 aa31745e452d7ae43c53549328db5a2f
BLAKE2b-256 0df8dca3577e4a88f60e5875c3f6637aec8cdb934616fe315b85f9ce0d25a115

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0aaa4f406eb2f164092cab2e37698e7b6f2d77a8ef19de73f0b132045f53f5bc
MD5 6d8036a2f94b455d725859bbb12e12c0
BLAKE2b-256 09e667f71495ee93ba255563ff612ae4bb054e1942bbc411cf1486fe80017a70

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e37bd37d933a7446f7010adbcaa91d7cd0cc8e90cc46f10c39e751ca796fc76b
MD5 e0204a69c7686cb8c8b9e54c5a4d7c0e
BLAKE2b-256 b9dcd5862ec74ff06cb4a8963408090a77cb42becdfddb5ac186ec7b1888f37d

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c15c60510c169fb57ddb9f3a5613f7aba1ed85391c51a46bf44bff18c04df1d7
MD5 925ce7dfa0f151e26e6094eb43345dfc
BLAKE2b-256 56429f3bffc7c43e425842f6c8147564bacf34178800f581126cab894e00bd67

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e8797efdc7a8577ad4f4cb8fdce6ac3d177c7c7d908bc82126cea31f7b18589
MD5 10902c54f7789b778fc420f001a2f34b
BLAKE2b-256 fb2c1c81e5469546b3b11293624566c917b3a57cad04c5ce571f521b133d9ea2

See more details on using hashes here.

File details

Details for the file datasketches-5.0.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.0.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2b2d6def430cb81f1380db3c80bebbc58e3804bddcae044512ce3a2530e494b5
MD5 ae9bc96abd2cf06c9b3c25093bf0984b
BLAKE2b-256 5012719365aec542fc00400043cc3f9c2b60a26c4e7d46d354902ca0059da1b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page