Skip to main content

The Apache DataSketches Library for Python

Project description

Apache DataSketchs Logo

The Apache DataSketches Library for Python

This is the official version of the Apache DataSketches Python library.

In the analysis of big data there are often problem queries that don’t scale because they require huge compute resources and time to generate exact results. Examples include count distinct, quantiles, most-frequent items, joins, matrix computations, and graph analysis.

If approximate results are acceptable, there is a class of specialized algorithms, called streaming algorithms, or sketches that can produce results orders-of magnitude faster and with mathematically proven error bounds. For interactive queries there may not be other viable alternatives, and in the case of real-time analysis, sketches are the only known solution.

This package provides a variety of sketches as described below. Wherever a specific type of sketch exists in Apache DataSketches packages for other languages, the sketches will be portable between languages (for platforms with the same endianness).

Building and Installation

Once cloned, the library can be installed by running python3 -m pip install . in the project root directory which will also install the necessary dependencies, namely NumPy and Nanobind.

If you prefer to call the setup.py build script directly, which is discouraged, you must first install nanobind and numpy, as well as any other dependencies listed under the build-system section in pyproject.toml.

The library is also available from PyPI via python3 -m pip install datasketches.

Usage

Having installed the library, loading the Apache DataSketches Library in Python is simple: import datasketches.

The unit tests are mostly structured in a tutorial style and can be used as a reference example for how to feed data into and query the different types of sketches.

Available Sketch Classes

  • KLL (Absolute Error Quantiles)
    • kll_ints_sketch
    • kll_floats_sketch
    • kll_doubles_sketch
    • kll_items_sketch
  • Quantiles (Absolute Error Quantiles, inferior algorithm)
    • quantiles_ints_sketch
    • quantiles_floats_sketch
    • quantiles_doubles_sketch
    • quantiles_items_sketch
  • REQ (Relative Error Quantiles)
    • req_ints_sketch
    • req_floats_sketch
    • req_items_sketch
  • Frequent Items
    • frequent_strings_sketch
    • frequent_items_sketch
    • Error types are frequent_items_error_type.{NO_FALSE_NEGATIVES | NO_FALSE_POSITIVES}
  • Theta
    • update_theta_sketch
    • compact_theta_sketch (cannot be instantiated directly)
    • theta_union
    • theta_intersection
    • theta_a_not_b
    • theta_jaccard_similarity
  • Tuple
    • update_tuple_sketch
    • compact_tuple_sketch (cannot be instantiated directly)
    • tuple_union
    • tuple_intersection
    • tuple_a_not_b
    • tuple_jaccard_similarity
  • HLL
    • hll_sketch
    • hll_union
    • Target HLL types are tgt_hll_type.{HLL_4 | HLL_6 | HLL_8}
  • CPC
    • cpc_sketch
    • cpc_union
  • VarOpt Sampling
    • var_opt_sketch
    • var_opt_union
  • EBPPS Sampling (Exactly proportional to weight)
    • ebpps_sketch
  • Vector of KLL
    • vector_of_kll_ints_sketches
    • vector_of_kll_floats_sketches
  • Kolmogorov-Smirnov Test
    • ks_test applied to a pair of matched-type Absolute Error quantiles sketches
  • Density
    • density_sketch
  • Count-min sketch
    • count_min_sketch

Known Differences from C++

The Python API largely mirrors the C++ API, with a few minor exceptions: The primary known differences are that Python on modern platforms does not support unsigned integer values or numeric values with fewer than 64 bits. As a result, you may not be able to produce identical sketches from within Python as you can with Java and C++. Loading those sketches after they have been serialized from another language will work as expected.

The Vector of KLL object is currently exclusive to python, and holds an array of independent KLL sketches. This is useful for creating a set of KLL sketches over a vector and has been designed to allow input as either a vector or a matrix of multiple vectors.

We have also removed reliance on a builder class for theta sketches as Python allows named arguments to the constructor, not strictly positional arguments.

Developer Instructions

The only developer-specific instructions relate to running unit tests.

Unit tests

The Python unit tests are run via tox, with no arguments, from the project root directory. Tox creates a temporary virtual environment in which to build and run the unit tests. In the event you are missing the necessary package, tox may be installed with python3 -m pip install --upgrade tox.

License

The Apache DataSketches Library is distributed under the Apache 2.0 License.

There may be precompiled binaries provided as a convenience and distributed through PyPI via [https://pypi.org/project/datasketches/] contain compiled code from nanobind, which is distributed under a BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datasketches-5.1.0.tar.gz (52.9 kB view details)

Uploaded Source

Built Distributions

datasketches-5.1.0-cp312-cp312-win_amd64.whl (503.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

datasketches-5.1.0-cp312-cp312-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

datasketches-5.1.0-cp312-cp312-musllinux_1_1_aarch64.whl (965.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

datasketches-5.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (745.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

datasketches-5.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (669.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

datasketches-5.1.0-cp312-cp312-macosx_11_0_arm64.whl (577.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

datasketches-5.1.0-cp312-cp312-macosx_10_14_x86_64.whl (642.5 kB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

datasketches-5.1.0-cp311-cp311-win_amd64.whl (502.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

datasketches-5.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

datasketches-5.1.0-cp311-cp311-musllinux_1_1_aarch64.whl (967.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

datasketches-5.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (733.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

datasketches-5.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (674.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

datasketches-5.1.0-cp311-cp311-macosx_11_0_arm64.whl (583.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

datasketches-5.1.0-cp311-cp311-macosx_10_14_x86_64.whl (653.8 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

datasketches-5.1.0-cp310-cp310-win_amd64.whl (502.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

datasketches-5.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

datasketches-5.1.0-cp310-cp310-musllinux_1_1_aarch64.whl (967.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

datasketches-5.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (734.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

datasketches-5.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (674.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

datasketches-5.1.0-cp310-cp310-macosx_11_0_arm64.whl (584.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

datasketches-5.1.0-cp310-cp310-macosx_10_14_x86_64.whl (653.9 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

datasketches-5.1.0-cp39-cp39-win_amd64.whl (502.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

datasketches-5.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

datasketches-5.1.0-cp39-cp39-musllinux_1_1_aarch64.whl (967.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

datasketches-5.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (734.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

datasketches-5.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (675.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

datasketches-5.1.0-cp39-cp39-macosx_11_0_arm64.whl (584.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

datasketches-5.1.0-cp39-cp39-macosx_10_14_x86_64.whl (654.2 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

datasketches-5.1.0-cp38-cp38-win_amd64.whl (502.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

datasketches-5.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

datasketches-5.1.0-cp38-cp38-musllinux_1_1_aarch64.whl (967.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

datasketches-5.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (733.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

datasketches-5.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (674.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

datasketches-5.1.0-cp38-cp38-macosx_11_0_arm64.whl (583.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

datasketches-5.1.0-cp38-cp38-macosx_10_14_x86_64.whl (653.6 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file datasketches-5.1.0.tar.gz.

File metadata

  • Download URL: datasketches-5.1.0.tar.gz
  • Upload date:
  • Size: 52.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for datasketches-5.1.0.tar.gz
Algorithm Hash digest
SHA256 2098c1a23edbfe64a4e2b8c1d344f461e0ce6123ef9d9d4e41ad49140c89460a
MD5 c788bf467ac4a7b5ea09f1c7034012ab
BLAKE2b-256 34191eb621d7c1f929fbde07544ab1dca50fa973afa479f713d97359ba394942

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 52dd6f9ffbd1425681f6e7f5396f85ec51aec6b2b6ebe5ed58429ddf8bb9abd4
MD5 c8b53064d7eee9515106a0ef4526f9a7
BLAKE2b-256 3c8f0d5bf4c8c4e4cbcca382fd300198fec0b293867b4219830230b8aca215a0

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c2a64d4f0acb1f46e0d9c660acea4442c418dc458ec266ab15670af3cddedfde
MD5 2978e53acfa3d6cda353c2a0d88da95e
BLAKE2b-256 b9074f2c16a78220bbb722e4aba2efb35eaf6a21e6a5e9401fd34120195b8a75

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f8db2e5dcf7134cdfb06e5161a39986c0c097df9cd732ed71f32f3b0b2201dc5
MD5 8fe26cad13a03a3138a90241f17f638e
BLAKE2b-256 11eccaaa0db6d30fdafe1cd697f58273b7fc1d45515a42b2029db368ac22923b

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33781a455bc3082cb29640e2ec68558951bbd47f7d7a9dfdc7cc4d45b6b7857c
MD5 13c068b0ea5ac81878895aac01981b1c
BLAKE2b-256 c124806d7a96b0cc8f2af85685c164a8283860555fb31c9ed3df51517856775d

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91a4a9877cb39b6b8c9564ee3d8c2840ab635a73e90ceec5d9d7e65fdc048a69
MD5 efe272f59d91b466a4ab9226dce42a9e
BLAKE2b-256 8693f3ef9cd68c9fd95d18d67d762691b5b9877eae3913f1fc38eb12f4c320e1

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0392a78bae226c3d5d4a476da3e9be3ff58ef76f79ca38c91059a8ca2c594dd6
MD5 f9fe5656277fee8f3767506e0b40a44b
BLAKE2b-256 f2a1f392d8a911efc8a07fc8e8e40548188da3bc3ddc37f5848c7bb91fd8e891

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 76b657b385e6a4fc07454d258557feff3f532b1469b407e826ecb56feeb3845b
MD5 faff16eb726be42222e8dff0e3907ebe
BLAKE2b-256 0458cce74add5294b28e00fca39b4311123473a2a7ad0037f6c1e7db860c51d0

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8d2eebf971c1897becbbb36b6535e4ac76ff7e8afe84807f8bc8e9ff6c1b247f
MD5 d06825dd6589f12b4011d820b605a785
BLAKE2b-256 fd90a6112cc281062b7832dfa05b7f3ea41a5a7d633a00edd3dd4275078d405a

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4d79ced5133500e3c9aa1b6b085ec6651c70133721b5865c46c53175b4e6ea2e
MD5 26bc904b59b740a93f01595a57544e6e
BLAKE2b-256 a00a7b726cba696c009681de90f18fae2e5da42ad3483bd5cfcde96af53c4fd7

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b8a718baa2eea3d8408e674e02e90e2ee5afcd5547c8e9ca8805f46ac798c101
MD5 2f022221bf47580ea57b1b906af678eb
BLAKE2b-256 d043b1734001b8e8c58ffd9e91a7acfc1dfe627c7f34b9e02fb0658b798bdcec

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4453c1df1e924ee297f318a2813db1ad05ae63c3121f35de4e62d0fc358e742
MD5 15deef612be2ff44fbf4f318493313ad
BLAKE2b-256 f6e541f23e5b3bef97d814552ccd581a45e79dcc828908b64a7e6e59df64a46c

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 213838924943b54da14345966a59102b65604f559b1e6120cd5385f5955efa19
MD5 072175a897fcb52092c40f1b1a82d0ef
BLAKE2b-256 1ec446ae396494de7266ff9c2e741f6fe36bbcc5e5265ec9120baab156f29219

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 72a4e4445db2b389ef254099842cb5f0c4825163146285226b1e8580091e65ee
MD5 66aa2a3ef7925ad186fd4644d8f71594
BLAKE2b-256 3d3a4b882753b163a3849ed4d21b6c89acdf68c8d841b4bc701a27b89b95a691

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7f9dded162f287b81ef3a041f5ba77b715fd13ebc118155e9dc6eaf52f6a0f3a
MD5 4e51ac7831db116e22a308c5b456315f
BLAKE2b-256 6a8fc54b443f2bb34a30552f861059c2966a5c930d8dce86597af8561a99a306

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a0cf2d539fda2478dfc17d5cf513c9c49b189dfefb6c0800dd61ca81de33eed4
MD5 aacd0abc3675838483b0340948a09ece
BLAKE2b-256 ce0d277ad5ca281a107199e48787b00f1020d20e0e9d48ead66c59cf9af2df60

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 59f0a91fcf4954a91f2cd4ec9a7f9e3a8d20ac16ddc9f2352e37e8dbcd5fc100
MD5 e6eb7cb79e1ce31585e6c56448fd0630
BLAKE2b-256 ccea5843ec039a2ebbabc8f2bf2fac964fbc9caa55afe3d51db056d532df9690

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ff808cb8de1889ec3d06ae4bd91812f7b60deb14a28df30348f43f23d936bfdb
MD5 5cc2ce9eefd71369f8c1e7667762ebba
BLAKE2b-256 942a16d4caad8fe7a12e11d95e46f139a5a37ac348b37556f1ed5ad3480acaa5

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa0fe62482c4ff2be0ce489461a29eebb5726d12fa0a5b4aea140bb71fae416c
MD5 86fd2d282f4ba06574d7fcf0aee97ef5
BLAKE2b-256 64c62d085b7cd8eb73943ef948e6713ce283720d34b446670d24381ce9f0b53c

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c45d221d20e0286ec60021d94032e6a2988a34a430a2da2f03145194150ad26d
MD5 0d39a988c215c0be6437f5c5a7a808fe
BLAKE2b-256 7300031e0ff2de790ddad4e3aa13efa98dad9afba8b9b8860eb0526186f4a441

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 743548037d996cdc5ba777276b7255de3ee7e32036ef0e9886e0ae61ba89664b
MD5 a957215b1972749a60921a4d5dd0a940
BLAKE2b-256 f9f865398d6e47f17932cd774092ed8e68d80d7fb9eba82ef86c4d96aebab7e7

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6c0c9492819fb9f16fbc44fde1bbbb4668b99d863fb06674fe374996dd713c7f
MD5 238ebfee7db816f88230357bf26edea0
BLAKE2b-256 07d038dc831f2f683cf1f06ee82e02bfc46836b8fddb92240cb54fa31c9fbed0

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1baf026bc3a59cf0fac7b23836fe910d2ff72a1accbf15d146aa46edf02e96d7
MD5 1683f669c0072ddccaa3066082e4a0ac
BLAKE2b-256 a8c451b486ad42cc16e0506b4d0c2fddede919eed39d280c18fe3fb1f1ebfa5e

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2ca23f54c4ee6196794b921d79e7721986bffb61204c2d0b2995209806111c9f
MD5 9025aaae495245cea2521e6d5dec6cfe
BLAKE2b-256 32cae6ac67dd8b596178d89a03ba1669662f715cbb9eb94708d7d9a563c135c0

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bbde72f44f07dda1d0d26454b18486a93f0682a511a8a54271b374dcdf691989
MD5 42917f8af0f70417418b1a06c4131938
BLAKE2b-256 749301644c65ab3a03e25ebeba3e896843a631ee74779e4eee13acbd0081b4a9

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c9783a2724532ad4e379b7be988d2dc61d7373805d30e184351d82ecd307eb3
MD5 573900bc48d78876a8dd82c9d196a42f
BLAKE2b-256 abf73cb5317c5599243438ad9b09ffef837adbc4e794a5cd287797eb26132939

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 938929548d829c89951667b8967698a3147289efc32a7735eac8f465535cee9b
MD5 12401f0bfe3ea7cde160bc29433f2905
BLAKE2b-256 6d25d21947cce01eb1d6705ec3f9359e63594be4ae1bf3af6fadef935a05657f

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fde64b18b2c182b78caee3b2b2aefce0e5143c641def2a7187dab631b596f0b2
MD5 250e24151629d8038b173e1c6b0f9b99
BLAKE2b-256 d0cf040b4c9a2b434d1213068fa74d1d7a722d88cbe0fa027d9a4b2e5578cd0b

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 954b6c57d53bf42dd0f00eeaa77ca6ba8288d50f2f2353ac3c9ff4524644ad08
MD5 6de01a92b2b178894263d9a191c614a7
BLAKE2b-256 d374d467d3c3e58dc89639286c4c15585ece2f14c595ee2825d96b07a4b8ffaf

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 543f55d3af686b72302e031feef60876189a916498d8675742128cd486df9684
MD5 4ee421862bf2a190846164f19b38edd2
BLAKE2b-256 4b4a274fa6525840a30ecdd41ba4372bd35de53140a3ace7a5531762c0e6ba81

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 63cfd87d18daaa2270de6bbd00dd2e3270b9ba326da6500195b91b1424654a95
MD5 1e15af6353679df1fd30b35bd8d78b32
BLAKE2b-256 f328ffb73e994e8dd4cd8dde8f4f3b94af0b83afa8ba66c143a66f664030eb98

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e9e70d73c91c8037272774ff5038b1f377a14f4070b8469f35c4d0603b039226
MD5 94a57503256e7cd81955685ae84c07e7
BLAKE2b-256 2eb1d52010d3956147de1fbb363691c3b51b6b377dfaeffd64c7d013480bbc43

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98c1f2419810f0a5aec8952f260e7f217f5e6e112b00bb130779fbeeb06511f7
MD5 2950dcb6bcf8dcce57b0c551b94c19c3
BLAKE2b-256 3b1868cd0629b924a15a5829f56652ad0b626237cf969c1871541bd1543e126b

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 686b94e0d082566ad4e2466bb676d53070dcf03019991dd93a036cfa4208ae24
MD5 c12f3c645bda6952e5448cf587284394
BLAKE2b-256 6f0354046ba5e49da4acb99c164adfe12e824c40da562677505f8e05b610839b

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 021e93d739e2587c80516a7e919dcf6a56a82a95394fa1bb93857344990d82af
MD5 9b3a41f1142ae6b5659b873f30878db6
BLAKE2b-256 bc88171014da0d1746fe5d8be73ffd582e688958835274a0e51322e7dc5bbe36

See more details on using hashes here.

File details

Details for the file datasketches-5.1.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for datasketches-5.1.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f9a1db86d162643626d503b143f793b8d6fb1ebf57542cb9976c7db1533ddcc1
MD5 ac133b85849337082acf071096ec86f4
BLAKE2b-256 5e565ce335325a1b0661c73b76de10d48cbee20b9cab1b611f657f486e69326a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page