Detect spoofing attack
Project description
Anti spoofing with the Datasouls dataset
Installation
pip install -U datasouls_antispoof
Example inference
Colab notebook with the example:
Dataset
ID & RD anti spoofing challenge
Four types of images:
- real
- replay
- printed
- mask2d
Training
Define the config.
Example at datasoluls_antispoof/configs
Define the environmental variable IMAGE_PATH
that points to the folder with the dataset.
Example:
export IMAGE_PATH=<path to the folder with images>
Inference
python -m torch.distributed.launch --nproc_per_node=<num_gpu> datasouls_antispoof/inference.py \
-i <path to images> \
-c <path to config> \
-w <path to weights> \
-o <output-path> \
--fp16
Pre-trained models
Models | Validation accuracy | Config file | Weights |
---|---|---|---|
swsl_resnext50_32x4d | 0.9673 | Link | Link |
tf_efficientnet_b3_ns | 0.9927 | Link | Link |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file datasouls_antispoof-0.0.4.tar.gz
.
File metadata
- Download URL: datasouls_antispoof-0.0.4.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2414002aa150234b8a041fabf918c12638c9125c198e73232f985322e438b9e3 |
|
MD5 | dd3bfda72103fbbefcad9f760d86679c |
|
BLAKE2b-256 | b8fcaabce976e9f7e6ea62e74623694d5a6ba41a45a25cf195430c854da9b236 |
File details
Details for the file datasouls_antispoof-0.0.4-py2.py3-none-any.whl
.
File metadata
- Download URL: datasouls_antispoof-0.0.4-py2.py3-none-any.whl
- Upload date:
- Size: 11.7 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e528a2d2d414a927f070dba4a68f4169f189cfa5dd0f43ad5dfee601f4644dd0 |
|
MD5 | a29db17aabfe51e4ba3cfdecbe6428c4 |
|
BLAKE2b-256 | 01ae9fe758bbddf806f5b0ab4215b569312321789173c567e25f119dc7afca04 |