Detect spoofing attack
Project description
Anti spoofing with the Datasouls dataset
Installation
pip install -U datasouls_antispoof
Example inference
Colab notebook with the example:
Dataset
ID & RD anti spoofing challenge
Four types of images:
- real
- replay
- printed
- mask2d
Training
Define the config.
Example at datasoluls_antispoof/configs
Define the environmental variable IMAGE_PATH
that points to the folder with the dataset.
Example:
export IMAGE_PATH=<path to the folder with images>
Inference
python -m torch.distributed.launch --nproc_per_node=<num_gpu> datasouls_antispoof/inference.py \
-i <path to images> \
-c <path to config> \
-w <path to weights> \
-o <output-path> \
--fp16
Pre-trained models
Models | Validation accuracy | Config file | Weights |
---|---|---|---|
swsl_resnext50_32x4d | 0.9673 | Link | Link |
tf_efficientnet_b3_ns | 0.9927 | Link | Link |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for datasouls_antispoof-0.0.4.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2414002aa150234b8a041fabf918c12638c9125c198e73232f985322e438b9e3 |
|
MD5 | dd3bfda72103fbbefcad9f760d86679c |
|
BLAKE2b-256 | b8fcaabce976e9f7e6ea62e74623694d5a6ba41a45a25cf195430c854da9b236 |
Close
Hashes for datasouls_antispoof-0.0.4-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e528a2d2d414a927f070dba4a68f4169f189cfa5dd0f43ad5dfee601f4644dd0 |
|
MD5 | a29db17aabfe51e4ba3cfdecbe6428c4 |
|
BLAKE2b-256 | 01ae9fe758bbddf806f5b0ab4215b569312321789173c567e25f119dc7afca04 |