Data Science Shortcuts. Package for lazy, or overwhelmed, data scientists
Project description
Data Science Shortcuts - DataSS
This time I really got tired of rewriting the same old data analysis functions again.
For now on I'll write them in this package.
MIT License.
Installation
Download and install:
git clone https://gitlab.com/htbrandao/datass.git
cd datass/
pip3 install -e .
or, install from PyPI:
pip3 install datass
or, install a specific version:
pip3 install datass==0.0.1
Usage
Example:
import datass
import pandas as pd
df = pd.read_csv('some-file.csv')
# find null values
datass.dataframe.inspection._isnull(df)
# run value counts
datass.dataframe.inspection._value_counts()(df)
# run describe
datass.dataframe.inspection._describe(df)
Other
TODO & FIXME
1 - keep on coding the actual module
1.1 - update docs
1.2 - fix proj page not fowarding to docs
1.3 - improve 404.md
2 - YOLO
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
datass-0.0.1.dev2.tar.gz
(3.2 kB
view hashes)
Built Distribution
Close
Hashes for datass-0.0.1.dev2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a01018989cd7bd4c3a5f2e263c98a2c0ba73fad83f932fb3eab9670141d8314 |
|
MD5 | d6c2c3d10a95e554e8d0e86da455aa65 |
|
BLAKE2b-256 | 1d96e63afbc2a4574cc0b822a0b1fcec86b2e813b2112ada69b3bb8eeebfb492 |