Skip to main content
Help us improve Python packaging – donate today!

Integrates SQLAlchemy with DataTables (framework agnostic)

Project Description

Installation

The package is available on PyPI and is tested on Python 2.7 to 3.4

pip install datatables

Usage

Using Datatables is simple. Construct a DataTable instance by passing it your request parameters (or another dict-like object), your model class, a base query and a set of columns. The columns list can contain simple strings which are column names, or tuples containing (datatable_name, model_name), (datatable_name, model_name, filter_function) or (datatable_name, filter_function).

Additional data such as hyperlinks can be added via DataTable.add_data, which accepts a callable that is called for each instance. Check out the usage example below for more info.

Example

models.py

class User(Base):
    __tablename__ = 'users'

    id          = Column(Integer, primary_key=True)
    full_name   = Column(Text)
    created_at  = Column(DateTime, default=datetime.datetime.utcnow)

    # Use lazy=joined to prevent O(N) queries
    address     = relationship("Address", uselist=False, backref="user", lazy="joined")

class Address(Base):
    __tablename__ = 'addresses'

    id          = Column(Integer, primary_key=True)
    description = Column(Text, unique=True)
    user_id     = Column(Integer, ForeignKey('users.id'))

views.py

@view_config(route_name="data", request_method="GET", renderer="json")
def users_data(request):
    # User.query = session.query(User)
    table = DataTable(request.GET, User, User.query, [
        "id",
        ("name", "full_name", lambda i: "User: {}".format(i.full_name)),
        ("address", "address.description"),
    ])
    table.add_data(link=lambda o: request.route_url("view_user", id=o.id))
    table.searchable(lambda queryset, user_input: perform_some_search(queryset, user_input))

    return table.json()

template.jinja2

<table class="table" id="clients_list">
    <thead>
        <tr>
            <th>Id</th>
            <th>User name</th>
            <th>Address</th>
        </tr>
    </thead>
    <tbody>
    </tbody>
</table>

<script>
    $("#clients_list").dataTable({
        serverSide: true,
        processing: true,
        ajax: "{{ request.route_url("data") }}",
        columns: [
            {
                data: "id",
                "render": function(data, type, row){
                    return $("<div>").append($("<a/>").attr("href", row.DT_RowData.link).text(data)).html();
                }
            },
            { data: "name" },
            { data: "address" }
        ]
</script>

Release history Release notifications

This version
History Node

0.4.9

History Node

0.4.6

History Node

0.4.5

History Node

0.4.4

History Node

0.4.2

History Node

0.4.1

History Node

0.4

History Node

0.3

History Node

0.2

History Node

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
datatables-0.4.9.zip (9.1 kB) Copy SHA256 hash SHA256 Source None Jan 6, 2015

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page