Skip to main content

DataYoga for Python

Project description

DataYoga Core

Introduction

datayoga-core is the transformation engine used in DataYoga, a framework for building and generating data pipelines.

Installation

pip install datayoga-core

Quick Start

This demonstrates how to transform data using a DataYoga job.

Create a Job

Use this example.yaml:

- steps:
    - uses: add_field
      with:
        fields:
          - field: full_name
            language: jmespath
            expression: concat([fname, ' ' , lname])
          - field: country
            language: sql
            expression: country_code || ' - ' || UPPER(country_name)
    - uses: rename_field
      with:
        fields:
          - from_field: fname
            to_field: first_name
          - from_field: lname
            to_field: last_name
    - uses: remove_field
      with:
        fields:
          - field: credit_card
          - field: country_name
          - field: country_code
    - uses: map
      with:
        expression:
          {
            first_name: first_name,
            last_name: last_name,
            greeting: "'Hello ' || CASE WHEN gender = 'F' THEN 'Ms.' WHEN gender = 'M' THEN 'Mr.' ELSE 'N/A' END || ' ' || full_name",
            country: country,
            full_name: full_name
          }
        language: sql

Transform Data Using datayoga-core

Use this code snippet to transform a data record using the job defined above:

import datayoga_core as dy
from datayoga_core.job import Job
from datayoga_core.utils import read_yaml

job_settings = read_yaml("example.yaml")
job = dy.compile(job_settings)

assert job.transform({"fname": "jane", "lname": "smith", "country_code": 1, "country_name": "usa", "credit_card": "1234-5678-0000-9999", "gender": "F"}) == {"first_name": "jane", "last_name": "smith", "country": "1 - USA", "full_name": "jane smith", "greeting": "Hello Ms. jane smith"}

As can be seen, the record has been transformed based on the job:

  • fname field renamed to first_name.
  • lname field renamed to last_name.
  • country field added based on an SQL expression.
  • full_name field added based on a JMESPath expression.
  • greeting field added based on an SQL expression.

Examples

  • Add a new field country out of an SQL expression that concatenates country_code and country_name fields after upper case the later:

    uses: add_field
    with:
      field: country
      language: sql
      expression: country_code || ' - ' || UPPER(country_name)
    
  • Rename fname field to first_name and lname field to last_name:

    uses: rename_field
    with:
      fields:
        - from_field: fname
          to_field: first_name
        - from_field: lname
          to_field: last_name
    
  • Remove credit_card field:

    uses: remove_field
    with:
      field: credit_card
    

For a full list of supported block types see reference.

Expression Language

DataYoga supports both SQL and JMESPath expressions. JMESPath are especially useful to handle nested JSON data, while SQL is more suited to flat row-like structures.

For more information about custom functions and supported expression language syntax see reference.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datayoga_core-1.38.0.tar.gz (27.4 kB view details)

Uploaded Source

Built Distribution

datayoga_core-1.38.0-py3-none-any.whl (45.2 kB view details)

Uploaded Python 3

File details

Details for the file datayoga_core-1.38.0.tar.gz.

File metadata

  • Download URL: datayoga_core-1.38.0.tar.gz
  • Upload date:
  • Size: 27.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for datayoga_core-1.38.0.tar.gz
Algorithm Hash digest
SHA256 e8f5a237baf0856df891c4c119572987e9834fd4c98d50398bd247b7e814e7db
MD5 bd2f5b4fb21fc9d4ece6374ee45a19f8
BLAKE2b-256 b79e0fbd8ff4ad006f9f31fbe0b045b33363849f7e182b692862784fbd57d9ca

See more details on using hashes here.

File details

Details for the file datayoga_core-1.38.0-py3-none-any.whl.

File metadata

File hashes

Hashes for datayoga_core-1.38.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ddda69335e46b7dde81f629329ebab52710fe6de21fd48cb1537f98674cb6def
MD5 fc696a0b154b4dc511607f6c30f11bbe
BLAKE2b-256 986595a4ea7dcb5cfb66644de94cbe219d436fe4354488e7af6c7d1521889f89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page