Skip to main content

DataYoga for Python

Project description

DataYoga Core

Introduction

datayoga-core is the transformation engine used in DataYoga, a framework for building and generating data pipelines.

Installation

pip install datayoga-core

Quick Start

This demonstrates how to transform data using a DataYoga job.

Create a Job

Use this example.yaml:

- steps:
    - uses: add_field
      with:
        fields:
          - field: full_name
            language: jmespath
            expression: concat([fname, ' ' , lname])
          - field: country
            language: sql
            expression: country_code || ' - ' || UPPER(country_name)
    - uses: rename_field
      with:
        fields:
          - from_field: fname
            to_field: first_name
          - from_field: lname
            to_field: last_name
    - uses: remove_field
      with:
        fields:
          - field: credit_card
          - field: country_name
          - field: country_code
    - uses: map
      with:
        expression:
          {
            first_name: first_name,
            last_name: last_name,
            greeting: "'Hello ' || CASE WHEN gender = 'F' THEN 'Ms.' WHEN gender = 'M' THEN 'Mr.' ELSE 'N/A' END || ' ' || full_name",
            country: country,
            full_name: full_name
          }
        language: sql

Transform Data Using datayoga-core

Use this code snippet to transform a data record using the job defined above:

import datayoga_core as dy
from datayoga_core.job import Job
from datayoga_core.utils import read_yaml

job_settings = read_yaml("example.yaml")
job = dy.compile(job_settings)

assert job.transform({"fname": "jane", "lname": "smith", "country_code": 1, "country_name": "usa", "credit_card": "1234-5678-0000-9999", "gender": "F"}) == {"first_name": "jane", "last_name": "smith", "country": "1 - USA", "full_name": "jane smith", "greeting": "Hello Ms. jane smith"}

As can be seen, the record has been transformed based on the job:

  • fname field renamed to first_name.
  • lname field renamed to last_name.
  • country field added based on an SQL expression.
  • full_name field added based on a JMESPath expression.
  • greeting field added based on an SQL expression.

Examples

  • Add a new field country out of an SQL expression that concatenates country_code and country_name fields after upper case the later:

    uses: add_field
    with:
      field: country
      language: sql
      expression: country_code || ' - ' || UPPER(country_name)
    
  • Rename fname field to first_name and lname field to last_name:

    uses: rename_field
    with:
      fields:
        - from_field: fname
          to_field: first_name
        - from_field: lname
          to_field: last_name
    
  • Remove credit_card field:

    uses: remove_field
    with:
      field: credit_card
    

For a full list of supported block types see reference.

Expression Language

DataYoga supports both SQL and JMESPath expressions. JMESPath are especially useful to handle nested JSON data, while SQL is more suited to flat row-like structures.

For more information about custom functions and supported expression language syntax see reference.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datayoga_core-1.43.0.tar.gz (28.5 kB view details)

Uploaded Source

Built Distribution

datayoga_core-1.43.0-py3-none-any.whl (46.0 kB view details)

Uploaded Python 3

File details

Details for the file datayoga_core-1.43.0.tar.gz.

File metadata

  • Download URL: datayoga_core-1.43.0.tar.gz
  • Upload date:
  • Size: 28.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for datayoga_core-1.43.0.tar.gz
Algorithm Hash digest
SHA256 4b5297509db605dcc9dff5c400345bd960e5d05dfb3a54bad9d949f7ab7b6a94
MD5 4204540654c6ec62f12d0336146a6aa2
BLAKE2b-256 3804951f65f71ea9b17ccbb06c6b1ab51ae2c27816371317a044a4a2f9756b91

See more details on using hashes here.

File details

Details for the file datayoga_core-1.43.0-py3-none-any.whl.

File metadata

File hashes

Hashes for datayoga_core-1.43.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6cbe04a22cdabc0b754fd93901a511a3a111335b78cd20172ab419d09742fb87
MD5 82c619ee260bb3b129570da68b7c8a3e
BLAKE2b-256 0936b9b9feff6c1abfae8f105d68c5cb72a70254c3be38cfb36ea9fcc0902e0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page