Skip to main content

DataYoga for Python

Project description

DataYoga Core

Introduction

datayoga-core is the transformation engine used in DataYoga, a framework for building and generating data pipelines.

Installation

pip install datayoga-core

Quick Start

This demonstrates how to transform data using a DataYoga job.

Create a Job

Use this example.yaml:

- steps:
    - uses: add_field
      with:
        fields:
          - field: full_name
            language: jmespath
            expression: concat([fname, ' ' , lname])
          - field: country
            language: sql
            expression: country_code || ' - ' || UPPER(country_name)
    - uses: rename_field
      with:
        fields:
          - from_field: fname
            to_field: first_name
          - from_field: lname
            to_field: last_name
    - uses: remove_field
      with:
        fields:
          - field: credit_card
          - field: country_name
          - field: country_code
    - uses: map
      with:
        expression:
          {
            first_name: first_name,
            last_name: last_name,
            greeting: "'Hello ' || CASE WHEN gender = 'F' THEN 'Ms.' WHEN gender = 'M' THEN 'Mr.' ELSE 'N/A' END || ' ' || full_name",
            country: country,
            full_name: full_name
          }
        language: sql

Transform Data Using datayoga-core

Use this code snippet to transform a data record using the job defined above:

import datayoga_core as dy
from datayoga_core.job import Job
from datayoga_core.utils import read_yaml

job_settings = read_yaml("example.yaml")
job = dy.compile(job_settings)

assert job.transform({"fname": "jane", "lname": "smith", "country_code": 1, "country_name": "usa", "credit_card": "1234-5678-0000-9999", "gender": "F"}) == {"first_name": "jane", "last_name": "smith", "country": "1 - USA", "full_name": "jane smith", "greeting": "Hello Ms. jane smith"}

As can be seen, the record has been transformed based on the job:

  • fname field renamed to first_name.
  • lname field renamed to last_name.
  • country field added based on an SQL expression.
  • full_name field added based on a JMESPath expression.
  • greeting field added based on an SQL expression.

Examples

  • Add a new field country out of an SQL expression that concatenates country_code and country_name fields after upper case the later:

    uses: add_field
    with:
      field: country
      language: sql
      expression: country_code || ' - ' || UPPER(country_name)
    
  • Rename fname field to first_name and lname field to last_name:

    uses: rename_field
    with:
      fields:
        - from_field: fname
          to_field: first_name
        - from_field: lname
          to_field: last_name
    
  • Remove credit_card field:

    uses: remove_field
    with:
      field: credit_card
    

For a full list of supported block types see reference.

Expression Language

DataYoga supports both SQL and JMESPath expressions. JMESPath are especially useful to handle nested JSON data, while SQL is more suited to flat row-like structures.

For more information about custom functions and supported expression language syntax see reference.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datayoga_core-1.51.0.tar.gz (30.1 kB view details)

Uploaded Source

Built Distribution

datayoga_core-1.51.0-py3-none-any.whl (49.5 kB view details)

Uploaded Python 3

File details

Details for the file datayoga_core-1.51.0.tar.gz.

File metadata

  • Download URL: datayoga_core-1.51.0.tar.gz
  • Upload date:
  • Size: 30.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for datayoga_core-1.51.0.tar.gz
Algorithm Hash digest
SHA256 c4960a0a626ab9bff3aca31dd1c144141caff02e90e1bd9a7c944d4fad3b8729
MD5 68fab10f5491ff69886f1e006b2ab972
BLAKE2b-256 800ef0b233a7601b7aa998021bc1a75b2f602f67f4fcc74f26bdce9400241061

See more details on using hashes here.

File details

Details for the file datayoga_core-1.51.0-py3-none-any.whl.

File metadata

File hashes

Hashes for datayoga_core-1.51.0-py3-none-any.whl
Algorithm Hash digest
SHA256 df33512701227381317e8ab3bb078969cb362f5677a7f945a523bdc46fc156b5
MD5 a5d647d25337fca74af198f23185070e
BLAKE2b-256 86a6469fc1a2775bc0c3d6438318b733c5f1bc3a1360cfc1b41d2bb20be0fb38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page