Skip to main content

DataYoga for Python

Project description

DataYoga Core

Introduction

datayoga-core is the transformation engine used in DataYoga, a framework for building and generating data pipelines.

Installation

pip install datayoga-core

Quick Start

This demonstrates how to transform data using a DataYoga job.

Create a Job

Use this example.yaml:

steps:
  - uses: add_field
    with:
      fields:
        - field: full_name
          language: jmespath
          expression: concat([fname, ' ' , lname])
        - field: country
          language: sql
          expression: country_code || ' - ' || UPPER(country_name)
  - uses: rename_field
    with:
      fields:
        - from_field: fname
          to_field: first_name
        - from_field: lname
          to_field: last_name
  - uses: remove_field
    with:
      fields:
        - field: credit_card
        - field: country_name
        - field: country_code
  - uses: map
    with:
      expression:
        {
          first_name: first_name,
          last_name: last_name,
          greeting: "'Hello ' || CASE WHEN gender = 'F' THEN 'Ms.' WHEN gender = 'M' THEN 'Mr.' ELSE 'N/A' END || ' ' || full_name",
          country: country,
          full_name: full_name
        }
      language: sql

Transform Data Using datayoga-core

Use this code snippet to transform a data record using the job defined above. The transform method returns a tuple of processed, filtered, and rejected records:

import datayoga_core as dy
from datayoga_core.job import Job
from datayoga_core.result import Result, Status
from datayoga_core.utils import read_yaml

job_settings = read_yaml("example.yaml")
job = dy.compile(job_settings)

assert job.transform([{"fname": "jane", "lname": "smith", "country_code": 1, "country_name": "usa", "credit_card": "1234-5678-0000-9999", "gender": "F"}]).processed == [
  Result(status=Status.SUCCESS, payload={"first_name": "jane", "last_name": "smith", "country": "1 - USA", "full_name": "jane smith", "greeting": "Hello Ms. jane smith"})]

The job can also be provided as a parsed json inline:

import datayoga_core as dy
from datayoga_core.job import Job
from datayoga_core.result import Result, Status
import yaml
import textwrap

job_settings = textwrap.dedent("""
  steps:
    - uses: add_field
      with:
        fields:
          - field: full_name
            language: jmespath
            expression: concat([fname, ' ' , lname])
          - field: country
            language: sql
            expression: country_code || ' - ' || UPPER(country_name)
    - uses: rename_field
      with:
        fields:
          - from_field: fname
            to_field: first_name
          - from_field: lname
            to_field: last_name
    - uses: remove_field
      with:
        fields:
          - field: credit_card
          - field: country_name
          - field: country_code
    - uses: map
      with:
        expression:
          {
            first_name: first_name,
            last_name: last_name,
            greeting: "'Hello ' || CASE WHEN gender = 'F' THEN 'Ms.' WHEN gender = 'M' THEN 'Mr.' ELSE 'N/A' END || ' ' || full_name",
            country: country,
            full_name: full_name
          }
        language: sql
""")
job = dy.compile(yaml.safe_load(job_settings))

assert job.transform([{"fname": "jane", "lname": "smith", "country_code": 1, "country_name": "usa", "credit_card": "1234-5678-0000-9999", "gender": "F"}]).processed == [
  Result(status=Status.SUCCESS, payload={"first_name": "jane", "last_name": "smith", "country": "1 - USA", "full_name": "jane smith", "greeting": "Hello Ms. jane smith"})]

As can be seen, the record has been transformed based on the job:

  • fname field renamed to first_name.
  • lname field renamed to last_name.
  • country field added based on an SQL expression.
  • full_name field added based on a JMESPath expression.
  • greeting field added based on an SQL expression.

Examples

  • Add a new field country out of an SQL expression that concatenates country_code and country_name fields after upper case the later:

    uses: add_field
    with:
      field: country
      language: sql
      expression: country_code || ' - ' || UPPER(country_name)
    
  • Rename fname field to first_name and lname field to last_name:

    uses: rename_field
    with:
      fields:
        - from_field: fname
          to_field: first_name
        - from_field: lname
          to_field: last_name
    
  • Remove credit_card field:

    uses: remove_field
    with:
      field: credit_card
    

For a full list of supported block types see reference.

Expression Language

DataYoga supports both SQL and JMESPath expressions. JMESPath are especially useful to handle nested JSON data, while SQL is more suited to flat row-like structures.

For more information about custom functions and supported expression language syntax see reference.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datayoga_core-1.69.0.tar.gz (31.8 kB view details)

Uploaded Source

Built Distribution

datayoga_core-1.69.0-py3-none-any.whl (54.5 kB view details)

Uploaded Python 3

File details

Details for the file datayoga_core-1.69.0.tar.gz.

File metadata

  • Download URL: datayoga_core-1.69.0.tar.gz
  • Upload date:
  • Size: 31.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for datayoga_core-1.69.0.tar.gz
Algorithm Hash digest
SHA256 806b5185db624a2e2b17c63c04d418f9d180824922979c7f8302df4ada67fd63
MD5 a4d80f3971ebaa00a401a647b2e6df59
BLAKE2b-256 d65f66ada19652c2572e2e0ef0db227ead04dcf775e7614d57a02376671f6860

See more details on using hashes here.

File details

Details for the file datayoga_core-1.69.0-py3-none-any.whl.

File metadata

File hashes

Hashes for datayoga_core-1.69.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0f6c2ca88b55ed7b3c0b4298a026e9c458ae3cce9fc806d77969028d81323d67
MD5 a3902a6cea5588094127a7d9a9dff766
BLAKE2b-256 105e7d7663c1904f587b5fdac464d2830a7949682ec78153193db656fe19aa4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page