The deep learning datasets provider
Project description
Data zoo
This repository provides unified access to multiple datasets.
Usage
First of all, you have to import data_provider from datazoo package:
from datazoo import data_provider
Then, you can select dataset from the list and get iterable:
# Dataset object
fashionmnist = data_provider(
dataset='fashionmnist', data_dir='data/fashionmnist/', split='test',
download=True, columns=['index', 'image', 'class']
)
print('Dataset length:', len(fashionmnist))
# Iterate over samples
for i in fashionmnist:
print(i)
Classification
Single-label datasets
Dataset | Name in data provider | Number of classes | Number of samples | Source | Auto downloading |
---|---|---|---|---|---|
MNIST | mnist |
10 | 60 000 / 10 000 | torchvision | Yes |
Fashion MNIST | fashionmnist |
10 | 60 000 / 10 000 | torchvision | Yes |
CIFAR-10 | cifar10 |
10 | 50 000 / 10 000 | torchvision | Yes |
CIFAR-100 | cifar100 |
100 | 50 000 / 10 000 | torchvision | Yes |
Indoor Scene Recognition | indoor_scene_recon |
67 | 15620 | -- | Yes |
The Street View House Numbers (SVHN) | svhn_cropped |
10 | 73257 digits for training, 26032 digits for testing, and 531131 additional | -- | Yes |
Linnaeus5 | linnaeus5 |
5 classes: berry, bird, dog, flower, other (negative set) | 1200 training images, 400 test images per class | -- | Yes |
COIL-100 | coil100 |
100 (100 objects) | 7200 images | -- | Yes |
License
This software is covered by MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
datazoo-0.0.3.tar.gz
(65.4 kB
view details)
File details
Details for the file datazoo-0.0.3.tar.gz
.
File metadata
- Download URL: datazoo-0.0.3.tar.gz
- Upload date:
- Size: 65.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4702806563129f1eb01829dff45a9ffd644afa635d456f13ce278f24baef2fcb |
|
MD5 | 95ad58c6a6408226d316708b1f19a13c |
|
BLAKE2b-256 | c10f2cb4c792165e9e10cdcfcbb31c8c9ea216ef3589debb5441d2a0c48e139d |