Skip to main content

The deep learning datasets provider

Project description

Data zoo

This repository provides unified access to multiple datasets.


First of all, you have to import data_provider from datazoo package:

from datazoo import data_provider

Then, you can select dataset from the list and get iterable:

# Dataset object
fashionmnist = data_provider(
	dataset='fashionmnist',	data_dir='data/fashionmnist/', split='test',
	download=True, columns=['index', 'image', 'class']

print('Dataset length:', len(fashionmnist))

# Iterate over samples
for i in fashionmnist:


Single-label datasets

Dataset Name in data provider Number of classes Number of samples Source Auto downloading
MNIST mnist 10 60 000 / 10 000 torchvision Yes
Fashion MNIST fashionmnist 10 60 000 / 10 000 torchvision Yes
CIFAR-10 cifar10 10 50 000 / 10 000 torchvision Yes
CIFAR-100 cifar100 100 50 000 / 10 000 torchvision Yes
Indoor Scene Recognition indoor_scene_recon 67 15620 -- Yes
The Street View House Numbers (SVHN) svhn_cropped 10 73257 digits for training, 26032 digits for testing, and 531131 additional -- Yes
Linnaeus5 linnaeus5 5 classes: berry, bird, dog, flower, other (negative set) 1200 training images, 400 test images per class -- Yes
COIL-100 coil100 100 (100 objects) 7200 images -- Yes


This software is covered by MIT License.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datazoo-0.0.3.tar.gz (65.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page