Skip to main content

Implement basic CRUD operations into DataObject framework with generalized DB access.

Project description

db-able

release build coverage dependencies

Framework to implement basic CRUD operations with DB for DataObject.

Quick start

Set up your connection string to your database.

from db_able import client


client.CONN_STR = '{dialect}+{driver}://{username}:{password}@{host}:{port}/{database}?{query_args}'

Implement the mixins into your DataObject to inject CRUD methods.

from do_py import R
from db_able import Creatable, Deletable, Loadable, Savable


class MyObject(Creatable, Deletable, Loadable, Savable):
    db = '{schema_name}'
    _restrictions = {
        'id': R.INT,
        'key': R.INT
        }
    load_params = ['id']
    create_params = ['key']
    delete_params = ['id']
    save_params = ['id', 'key']


my_obj = MyObject.create(key=555)
my_obj = MyObject.load(id=my_obj.id)
my_obj.key = 777
my_obj.save()
my_obj.delete()

Classmethods create, load, and methods save and delete are made available to your DataObject class.

Use provided SQL Generating utils to expedite implementation.

from db_able.utils.sql_generator import print_all_sps
from examples.a import A

print_all_sps(A)

Examples

"A" Python implementation

from do_py import DataObject, R

from db_able import Creatable, Loadable, Savable, Deletable


class Json(DataObject):
    """ Nested Json object for A. """
    _restrictions = {
        'x': R.INT,
        'y': R.INT
        }


class A(Creatable, Loadable, Savable, Deletable):
    """ Basic DBAble implementation for unit tests. """
    db = 'testing'
    _restrictions = {
        'id': R.INT,
        'string': R.NULL_STR,
        'json': R(Json, type(None)),
        'int': R.NULL_INT,
        'float': R.NULL_FLOAT,
        'datetime': R.NULL_DATETIME
        }
    load_params = ['id']
    create_params = ['string', 'json', 'int', 'float', 'datetime']
    save_params = ['id', 'string', 'json', 'int', 'float', 'datetime']
    delete_params = ['id']

"A" MySQL Table structure

CREATE TABLE IF NOT EXISTS `testing`.`a`
(
    `id`       INT         NOT NULL AUTO_INCREMENT,
    `string`   VARCHAR(45) NULL,
    `json`     JSON        NULL,
    `int`      INT(11)     NULL,
    `float`    FLOAT       NULL,
    `datetime` TIMESTAMP   NULL,
    PRIMARY KEY (`id`)
);

"A" MySQL CRUD Stored Procedures

USE `testing`;
DROP PROCEDURE IF EXISTS `testing`.`A_create`;

DELIMITER $$
CREATE
    DEFINER = `root`@`localhost` PROCEDURE `testing`.`A_create`
(
    IN `_string` VARCHAR(45),
    IN `_json` JSON,
    IN `_int` INT,
    IN `_float` FLOAT,
    IN `_datetime` TIMESTAMP
)
BEGIN

    INSERT INTO
        `testing`.`a`
        (
            `string`,
            `json`,
            `int`,
            `float`,
            `datetime`
        )
    VALUES
        (
            `_string`,
            `_json`,
            `_int`,
            `_float`,
            `_datetime`
        );
    CALL `testing`.`A_load`(LAST_INSERT_ID());

END;
$$
DELIMITER ;

USE `testing`;
DROP PROCEDURE IF EXISTS `testing`.`A_delete`;

DELIMITER $$
CREATE
    DEFINER = `root`@`localhost` PROCEDURE `testing`.`A_delete`
(
    IN `_id` INT
)
BEGIN

    DELETE
    FROM
        `testing`.`a`
    WHERE
        `id` = `_id`;
    SELECT ROW_COUNT() AS `deleted`;

END;
$$
DELIMITER ;

USE `testing`;
DROP PROCEDURE IF EXISTS `testing`.`A_load`;

DELIMITER $$
CREATE
    DEFINER = `root`@`localhost` PROCEDURE `testing`.`A_load`
(
    IN `_id` INT
)
BEGIN

    SELECT *
    FROM
        `testing`.`a`
    WHERE
        `id` = `_id`;

END;
$$
DELIMITER ;

USE `testing`;
DROP PROCEDURE IF EXISTS `testing`.`A_save`;

DELIMITER $$
CREATE
    DEFINER = `root`@`localhost` PROCEDURE `testing`.`A_save`
(
    IN `_id` INT,
    IN `_string` VARCHAR(45),
    IN `_json` JSON,
    IN `_int` INT,
    IN `_float` FLOAT,
    IN `_datetime` TIMESTAMP
)
BEGIN

    UPDATE
        `testing`.`a`
    SET
        `string`=`_string`,
        `json`=`_json`,
        `int`=`_int`,
        `float`=`_float`,
        `datetime`=`_datetime`
    WHERE
        `id`=`_id`;
    CALL `testing`.`A_load`(`_id`);

END;
$$
DELIMITER ;

Advanced Use Cases

User

This implementation requires extension of core functionality to support salting, hashing, and standard password security practices.

import crypt
import hashlib

from do_py import R

from db_able import Loadable, Creatable, Savable, Deletable


class User(Loadable, Creatable, Savable, Deletable):
    """
    User DataObject with DB CRUD implementation.
    Customized to handle password encryption and security standards.
    """
    db = 'testing'
    _restrictions = {
        'user_id': R.INT,
        'username': R.STR,
        'salt': R.STR,
        'hash': R.STR
        }
    _extra_restrictions = {
        'password': R.STR,
        }
    load_params = ['user_id']
    create_params = ['username', 'salt', 'hash']  # password is required. salt and hash are generated.
    save_params = ['user_id', 'username', 'salt', 'hash']
    delete_params = ['user_id']

    @classmethod
    def generate_salt(cls):
        """
        :rtype: str
        """
        return crypt.mksalt(crypt.METHOD_SHA512)

    @classmethod
    def generate_hash(cls, password, salt):
        """
        :type password: str
        :type salt: str
        :rtype: str
        """
        salted_password = password + salt
        return hashlib.sha512(salted_password.encode()).hexdigest()

    @classmethod
    def create(cls, password=None, **kwargs):
        """
        Overloaded to prevent handling raw password in DB.
        :type password: str
        :keyword username: str
        :rtype: User
        """
        password = cls.kwargs_validator('password', password=password)[0][1]
        salt = cls.generate_salt()
        kwargs.update({
            'salt': salt,
            'hash': cls.generate_hash(password, salt)
            })
        return super(User, cls).create(**kwargs)

    def save(self, password=None):
        """
        Overloaded to support updating password with security.
        :type password: str
        :rtype: bool
        """
        if password:
            password = self.kwargs_validator('password', password=password)[0][1]
            self.salt = self.generate_salt()
            self.hash = self.generate_hash(password, self.salt)
        return super(User, self).save()

User MySQL Table Structure

CREATE TABLE IF NOT EXISTS `user` (
  `user_id` int NOT NULL AUTO_INCREMENT,
  `username` varchar(255) NOT NULL,
  `salt` varchar(255) NOT NULL,
  `hash` varchar(255) NOT NULL,
  PRIMARY KEY (`user_id`)
);

User MySQL CRUD Stored Procedures

USE `testing`;
DROP PROCEDURE IF EXISTS `testing`.`User_load`;

DELIMITER $$
CREATE
    DEFINER = `root`@`localhost` PROCEDURE `testing`.`User_load`
(
    IN `_user_id` VARCHAR(255)
)
BEGIN

    SELECT * FROM `testing`.`user` WHERE `user_id` = `_user_id`;

END;
$$
DELIMITER ;


USE `testing`;
DROP PROCEDURE IF EXISTS `testing`.`User_create`;

DELIMITER $$
CREATE
    DEFINER = `root`@`localhost` PROCEDURE `testing`.`User_create`
(
    IN `_username` VARCHAR(255),
    IN `_salt` VARCHAR(255),
    IN `_hash` VARCHAR(255)
)
BEGIN

    INSERT INTO `testing`.`user` (`username`, `salt`, `hash`) VALUES (`_username`, `_salt`, `_hash`);
    CALL `testing`.`User_load`(LAST_INSERT_ID());

END;
$$
DELIMITER ;


USE `testing`;
DROP PROCEDURE IF EXISTS `testing`.`User_save`;

DELIMITER $$
CREATE
    DEFINER = `root`@`localhost` PROCEDURE `testing`.`User_save`
(
    IN `_user_id` VARCHAR(255),
    IN `_username` VARCHAR(255),
    IN `_salt` VARCHAR(255),
    IN `_hash` VARCHAR(255)
)
BEGIN

    
    UPDATE `testing`.`user` SET `username`=`_username`, `salt`=`_salt`, `hash`=`_hash` WHERE `user_id` = `_user_id`;
    CALL `testing`.`User_load`(`_user_id`);

END;
$$
DELIMITER ;


USE `testing`;
DROP PROCEDURE IF EXISTS `testing`.`User_delete`;

DELIMITER $$
CREATE
    DEFINER = `root`@`localhost` PROCEDURE `testing`.`User_delete`
(
    IN `_user_id` VARCHAR(255)
)
BEGIN

    DELETE FROM `testing`.`user` WHERE `user_id` = `_user_id`;
    SELECT ROW_COUNT() AS `deleted`;


END;
$$
DELIMITER ;

Best Practices

  • It is recommended to store your SQL files within your code repository for ease of reference. Refer to do-able/tests/sql for an example of code organization.
  • Generally, explicitly defining the columns for your %s_load stored procedures is better for forward compatibility as changes are implemented in the long run.

Testing & Code Quality

Code coverage reports for master, branches, and PRs are posted here in CodeCov.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

db-able-2.1.2.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

db_able-2.1.2-py3-none-any.whl (28.8 kB view details)

Uploaded Python 3

File details

Details for the file db-able-2.1.2.tar.gz.

File metadata

  • Download URL: db-able-2.1.2.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.1

File hashes

Hashes for db-able-2.1.2.tar.gz
Algorithm Hash digest
SHA256 6c874cd7d7f8f9da5c706f9c6eb32278e24bfed87e1da736f79f234aabd47c77
MD5 96a1254456fd54568b92e3f3849a1fad
BLAKE2b-256 03b631eb9623e7bace4191ef32bb424f9ce562e59c8334d051bfe9d438e386df

See more details on using hashes here.

File details

Details for the file db_able-2.1.2-py3-none-any.whl.

File metadata

  • Download URL: db_able-2.1.2-py3-none-any.whl
  • Upload date:
  • Size: 28.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.1

File hashes

Hashes for db_able-2.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 651cc9d0fd2d560c111be72300ddc17c81430ed22b138a1a6a6b5dbcffa8fc1b
MD5 8eb304f5bc8cae81f8beab08006f0457
BLAKE2b-256 f4ac805989226057eb1b0d1e722e7c8f83f50603342dc21aa5f2af0336a5917b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page