Skip to main content

database caching for dynamic programming

Project description

DB Cache

https://img.shields.io/pypi/v/db_cache.svg https://img.shields.io/travis/bchiang2/db_cache.svg Documentation Status Updates

database caching for dynamic programming

Intro

Guide

TL;DR

import db_cache

# Instantiate cache object that connects to PostgreSQL with provided credential
cache = db_cache.Cache(database="db_name", user="admin", password="12345", host="localhost")

# Create decorater that cache function result using provided table name
@cache.use_table("some_table_name")
def some_expensive_function(large_int):
    prime1, prime2 = factoring(large_int)
    return (prime1, prime2)

# Return cached value if possible, otherwise compute and cache result.
some_expensive_function(121103)

Features

  • TODO

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.1.0 (2016-11-04)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

db_cache-0.1.2-py2.py3-none-any.whl (5.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file db_cache-0.1.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for db_cache-0.1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9eeacc849f378d0cbe36200ccb813de4bbcc6ef808f47f5e5d4d310aec84f56f
MD5 b2e4d67502bc5265c67243f8d2bd2128
BLAKE2b-256 30a744c5f0e231427400cf8f904579cdc9ce8974af84de9bab13d0ccd0df36c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page