Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

Database communication manager

Project description

Database Communication Manager

Collection of wrappers for communication with database. Supports following databases:

  • SQLite
  • PostgreSQL


To install the package, simply use pip.

$ pip install db_commuter


To create a new commuter instance, you need to set path to SQLite database file.

from db_commuter.commuters import SQLiteCommuter
commuter = SQLiteCommuter(path2db)

Select data from table and return Pandas.DataFrame.

age = 55
salary = 1000
data ='select * from people where age > %s and salary > %s' % (age, salary))

Insert from DataFrame to database table.

commuter.insert('people', data)

Execute an SQL statement.

who = 'Yeltsin'
age = 72
commuter.execute('insert into people values (?, ?)', vars=(who, age)) 

To execute multiple SQL statements with one call, use executescript.



Setting the commuter

To initialize a new commuter with PostgreSQL database, you need to set the basic connection parameters, which are host, port, user, password, db_name. Any other connection parameter can be passed as a keyword. The list of the supported parameters can be seen here.

from db_commuter.commuters import PgCommuter

conn_params = {
    'host': 'localhost',
    'port': '5432',
    'user': 'postgres',
    'password': 'password',
    'db_name': 'test_db'

commuter = PgCommuter(**conn_params)

Basic usage

Basic operations are provided with select, insert and execute methods.

data ='select * from people where age > %s and salary > %s' % (55, 1000))
commuter.insert('people', data)
commuter.execute('insert into people values (%s, %s)', vars=('Yeltsin', 72)) 

To execute multiple SQL statements with one call, use executescript.


Setting schema in constructor

If you operate only on tables within the specific schema, it could make sense to specify the name of database schema when you create the commuter instance.

from db_commuter.commuters import PgCommuter
commuter = PgCommuter(host, port, user, password, db_name, schema='model')

Insert row and return serial key

Use insert_return method to insert a new row to the table and return the serial key of the newly inserted row.

cmd = 'INSERT INTO people (name, age) VALUES (%s, %s)'
values = ('Yeltsin', '72')
pid = commuter.insert_return(cmd, values=values, return_id='person_id')

In the example above the table people should contain a serial key person_id.

Insert row

Alternatively, you can use insert_row method to insert one new row.

from datetime import datetime

    birth_date=datetime(1931, 2, 1))

It also supports the returning of the serial key.

pid = commuter.insert_row(


In contrast to insert method which, in turn, uses pandas to_sql machinery, the copy_from method efficiently copies data from DataFrame to database employing PostgreSQL copy_from command.

commuter.copy_from(table_name='people', data=data)

As compared to insert, this method works much more effective on the large dataframes. You can also set format_data parameter as True to allow automatically format your DataFrame before calling copy_from command.

commuter.copy_from(table_name='people', data=df, format_data=True)

Delete table

commuter.delete_table(table_name='people', schema='my_schema')

Check if table exists

Return True if table exists, otherwise return False.

is_exist = commuter.is_table_exist(table_name='people', schema='my_schema')

Column names

Return list of the column names of the given table.

columns = commuter.get_column_names(table_name='people', schema='my_schema')

Amount of connections to database

Return the amount of active connections to the database.

n_connections = commuter.get_connections_count()

Resolve primary conflicts

This method can be used when you want to apply copy_from and the DataFrame contains rows conflicting with the primary key (duplicates). To remove conflicted rows from the DataFrame you can use resolve_primary_conflicts.

df = commuter.resolve_primary_conflicts(
    p_key=['payment_date', 'payment_type'],

It selects data from the table_name where value in filter_col is greater or equal the minimal found value in filter_col of the given DataFrame. Rows having primary key which is already presented in selected data are deleted from the DataFrame.

You need to specify parameter p_key with the list of column names representing the primary key.

Resolve foreign conflicts

This method selects data from parent_table_name where value in filter_parent column is greater or equal the minimal found value in filter_child column of the given DataFrame. Rows having foreign key which is already presented in selected data are deleted from DataFrame.

df = commuter.resolve_foreign_conflicts(

Parameter f_key should be specified with the list of column names represented the foreign key.


Package is released under MIT License.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for db-commuter, version 0.1.13
Filename, size File type Python version Upload date Hashes
Filename, size db_commuter-0.1.13-py3-none-any.whl (10.3 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size db-commuter-0.1.13.tar.gz (10.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page