Skip to main content

Simple package for creating mockdata for a live database, according to specified relational schema.

Project description

Mock data generation

This is small project for generating artificial / mock data, conforming to the specified DB schema. It can be useful to either generate pseudo-realistic data in the database, or prepare large amounts of mock data for stress testing.

The package allows for generating mock data for specified database schema.

Simple configuration file schema:

{
  "connection": "postgresql+psycopg2://admin:test@172.17.0.1:5432/ChmielDB",
  "tables": {
        "Projects":{
        "id": "PK serial",
        "project_name": "first_name",
        "project_owner": "FK Users.id"
      },
      "Users": {
        "id": "PK serial",
        "first_name": "first_name",
        "last_name": "last_name",
        "email": "email UNIQUE",
        "password": "password",
        "role": "OPTION IN (USER, ADMIN)",
        "address": "address",
        "birth_date": "timestamp",
        "phone_number": "phone"
      },
      "IntermediaryTable: Projects_Users": {
        "project_id": "FK Projects.id",
        "user_id": "FK Users.id"
      },
  },
  "objects_count": {
    "Users": 25,
    "Projects": 10,
    "Projects_Users": 250,
  }

Advanced configuration file schema:

{
  "connection": "postgresql+psycopg2://admin:test@172.22.0.1:5432/JobMarketDB",
  "tables": {
    "app_users": {
      "user_id": "PK UUID",
      "company": "FK_UUID company.company_id",
      "email": "email UNIQUE",
      "first_name": "first_name",
      "last_name": "last_name",
      "phone": "first_name",
      "role": "OPTION IN (USER,ADMIN)",
      "is_blocked": "bool",
      "email_verified": "bool",
      "employee_verified": "bool",
      "created_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)",
      "password_hash": "first_name"
    },
    "skills": {
      "skill_id": "PK UUID",
      "profile_id": "FK_UUID user_profiles.profile_id",
      "skill_name": "first_name",
      "proficiency_level": "first_name",
      "updated_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)"
    },
    "chat_messages": {
      "message_id": "PK UUID",
      "chat_id": "FK_UUID chats.chat_id",
      "content": "long_text RANGE(6, 20)",
      "created_by": "FK_UUID app_users.user_id",
      "created_by_display": "first_name",
      "read_by": "first_name",
      "deleted_by": "first_name",
      "created_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)",
      "updated_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)"
    },
    "job": {
      "job_id": "PK UUID",
      "company_id": "FK_UUID company.company_id",
      "job_title": "first_name",
      "job_description": "long_text RANGE(6, 20)",
      "required_skills": "jsonb:json1",
      "required_experience": "long_text RANGE(6, 20)",
      "location": "first_name",
      "salary": "float RANGE(100,12000) DISTRIBUTION(normal,mean=1,std=1)",
      "created_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00) RANGE()"
    },
    "experiences": {
      "experience_id": "PK UUID",
      "profile_id": "FK_UUID user_profiles.profile_id",
      "company_name": "FK_UUID company.company_id",
      "role": "first_name",
      "start_date": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)",
      "end_date": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)",
      "updated_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)"
    },
    "educations": {
      "education_id": "PK UUID",
      "profile_id": "first_name",
      "institution_name": "first_name",
      "degree": "first_name",
      "location": "country+city(\"en_US\",\"en_GB\",\"fr_FR\",\"de_DE\",\"it_IT\",\"es_ES\",\"pl_PL\",\"nl_NL\",\"pt_PT\",\"sv_SE\",\"da_DK\",\"fi_FI\",\"no_NO\",\"cs_CZ\",\"hu_HU\",\"en_CA\",\"sk_SK\")",
      "start_date": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)",
      "end_date": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)",
      "updated_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)"
    },
    "company": {
      "company_id": "PK UUID",
      "company_name": "first_name",
      "location": "first_name",
      "industry": "first_name",
      "description": "first_name",
      "verified": "bool",
      "created_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)",
      "updated_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)"
    },
    "chats": {
      "chat_id": "PK UUID",
      "name": "first_name",
      "created_by": "first_name",
      "deleted_by": "first_name",
      "last_message": "first_name",
      "tags": "first_name",
      "created_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)",
      "updated_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)"
    },
    "IntermediaryTable: user_chats":{
      "chat_id": "FK_UUID chats.chat_id",
      "user_id": "FK_UUID app_users.user_id"
    },
    "user_profiles": {
      "profile_id": "PK UUID",
      "user_id": "FK_UUID app_users.user_id",
      "resume_path": "first_name",
      "profile_picture_path": "first_name",
      "updated_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)"
    },
    "user_settings": {
      "settings_id": "PK UUID",
      "user_id": "FK_UUID app_users.user_id",
      "offers_notification": "bool",
      "newsletter_notification": "bool",
      "recruiter_messages": "bool",
      "push_notification": "bool",
      "updated_at": "timestamp RANGE(2023-01-01 00:00:00,2024-12-24 22:12:00)"
    }
  },
  "json_schemas": [
    {
      "json1": {
        "fields": [
          {
            "skills": {
               "type": "array",
               "item_count": "RANGE(1, 5)",
               "content": {
                  "type": "object",
                  "fields": {
                    "name": {
                      "type": "string",
                      "options": ["Python", "JavaScript", "Java", "C++", "Go", "Ruby"]
                    },
                    "level": {
                      "type": "integer",
                      "range": [1, 5]
                    }
                  }
               }
            }
          }
        ]
      }
    }
  ],
  "objects_count": {
    "app_users": 200,
    "skills": 500,
    "chat_messages": 8000,
    "job": 250,
    "experiences": 100,
    "educations": 200,
    "company": 20,
    "chats": 50,
    "user_profiles": 500,
    "user_settings": 500,
    "user_chats": 10000
  }
}

Allowed column keywords:

TODO

Disclaimer:

The program only checks for uniqueness and integrity withing itself, there can still be error if there's already existing data in the database.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

db_mockdata-0.4.1.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

db_mockdata-0.4.1-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file db_mockdata-0.4.1.tar.gz.

File metadata

  • Download URL: db_mockdata-0.4.1.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for db_mockdata-0.4.1.tar.gz
Algorithm Hash digest
SHA256 d4270de90f3443a61f728e468bc3d68876f1d0774f3380e687e3991adba19466
MD5 187ad1181979775e2b0d492e0cf6bae6
BLAKE2b-256 258eced336665f9274585f4ccdbe3f1224eb6e9c9936fb911c5ccf293df3e0cb

See more details on using hashes here.

Provenance

The following attestation bundles were made for db_mockdata-0.4.1.tar.gz:

Publisher: pypi-push.yml on Experrior/db-mockdata

Attestations:

File details

Details for the file db_mockdata-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: db_mockdata-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 8.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for db_mockdata-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ae28d3bc6f6f7bad10bca56abc397694c49cdb1d9a1b1b42f51c50069ffce265
MD5 04b3e3931c285796997260f438d0acc9
BLAKE2b-256 c9edfe24896fcb6d3c6a02bf2db6839012fa929d11a78eabf556f255677bf71e

See more details on using hashes here.

Provenance

The following attestation bundles were made for db_mockdata-0.4.1-py3-none-any.whl:

Publisher: pypi-push.yml on Experrior/db-mockdata

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page