Skip to main content

No project description provided

Project description

Build Status Codecov GitHub

Python class helpers for sqlite3 and InfluxDB databases.

SQHelper (SqLite3 Databases)

Example: Create, read and remove a table working with just dataframes.

from dbops.sqhelper import SQHelper
import pandas as pd

>>> table_name = 'temperature'
>>> df = pd.DataFrame({"timestamp": [1587222785, 1587222786], 'celsius': [23.3, 23.9]})

>>> db = 'myDatabase.sql3'
>>> database = SQHelper(db)

# The dataframe column names are used for the table's column names. 
# All dataframe entries are automatically inserted.
>>> database.create_table(table_name,df)
['timestamp', 'celsius']

# Add some more entries to the database, in this case duplicates of the above entry are made.
>>> database.insert(table_name,df)
True

# Read the content back into a dataframe
>>> database.table_to_df(table_name)
   celsius   timestamp
0     34.2  1587222785
1     23.3  1587222785
2     23.9  1587222786
3     23.3  1587222785
4     23.9  1587222786

# Remove the table from the database
>>> database.remove_table(table_name);
True

Example: Create a table, add an entry and return it as a Pandas dataframe.

from dbops.sqhelper import SQHelper

>> db = 'myDatabase.sql3'
>>> table_name = 'temperature'
>>> columns = {'timestamp': 'NUMERIC', 'celsius': 'REAL'}

# Create a class instance for a single database
>>> database = SQHelper(db)

# Add a table to the database
>>> database.create_table(table_name,columns)
['timestamp', 'celsius']

# Get all the tables in the database
>>> database.get_table_names()
['temperature']

# Add an entry to the database
>>> new_entry = {'timestamp': 1587222785, 'celsius': 34.2}
>>> database.insert(table_name, new_entry)
True

# Return the table as a Pandas Dataframe
df = database.table_to_df(table_name)

# Return all rows based on a column query, returns matching rows as dataframe
>>> database.get_row(table_name, 'celsius', 34.2);
   celsius   timestamp
0     34.2  1587222785

Use help(SQHelper) for more detailed information.

InfluxDB

from dbops.imfluxhelper import InfluxHelper

# Create a class instance for a single database
>>> database = InfluxHelper('database_name')

# Check the database is connected to OK
>>> database.exists()
True

# Add a new measurement to the database as a dictionary
>>> data = {'timestamp': 1585848415, 'temperature': 23.3, 'humidity': 12.2, 'room': 'kitchen', 'house': 'home'}
>>> measurement = 'Environment'
>>> fields = ['temperature', 'humidity']
>>> tags = ['room', 'house']
>>> database.insert(measurement, data, field_keys=fields, tag_keys=tags, use_timestamp=True)
True

# Add multiple measurements as a Pandas DataFrame
>>> data = [{
    'timestamp': 1585848415,
    'temperature': 23.3,
    'humidity': 12.2,
    'room': 'kitchen',
    'house': 'home'
}, {
    'timestamp': 1585848416,
    'temperature': 22.1,
    'humidity': 13.4,
    'room': 'bedroom',
    'house': 'home'
}]
>>> df = pd.DataFrame(data)
>>> measurement = 'Household'
>>> fields = ['temperature', 'humidity']
>>> tags = ['room', 'house']
>>> database.insert(measurement, df, field_keys=fields, tag_keys=tags, use_timestamp=use_time)
True

# Get all the measurements in the database
>>> database.get_measurement_names()
['Environment', 'Household']

# Get the last time based entry in a table
>>> last_time_entry = database.get_last_time_entry('Household', 'humidity', 'room', 'bedroom', as_unix=True)
>>> last_time_entry['last']
13.4
>>> last_time_entry['time']
1585848416

Use help(InfluxHelper) for more detailed information.

Version History

0.1.0:

  • Added interface for Influx Databases
  • Added some timestamp conversion utilities
  • Improved documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

db-ops-0.1.1.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

db_ops-0.1.1-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file db-ops-0.1.1.tar.gz.

File metadata

  • Download URL: db-ops-0.1.1.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for db-ops-0.1.1.tar.gz
Algorithm Hash digest
SHA256 b4d215429b4869f82fa6682d3ae392d928814b8cbc0fb7c0a8b0802a5f2ec45e
MD5 3ce0ddca1e0f2700d4dc65e574fa4e6c
BLAKE2b-256 7631865304c09b2ff920d19ccad476c012e75284eac1788d95817cba48471e2c

See more details on using hashes here.

File details

Details for the file db_ops-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: db_ops-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for db_ops-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1d325294667e11e674f1dc3f3e06c9ae91948225e02a82913426cb2511eb4a9e
MD5 2b6f4d8c9219314491aabbae9262faae
BLAKE2b-256 a263059fa266d6e8f6e9214992967dbf74711467237937cba44a4177110928f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page