Skip to main content

No project description provided

Project description

Build Status Codecov GitHub

Python class helpers for sqlite3 and InfluxDB databases.

SQHelper (SqLite3 Databases)

Example: Create, read and remove a table working with just dataframes.

from dbops.sqhelper import SQHelper
import pandas as pd

>>> table_name = 'temperature'
>>> df = pd.DataFrame({"timestamp": [1587222785, 1587222786], 'celsius': [23.3, 23.9]})

>>> db = 'myDatabase.sql3'
>>> database = SQHelper(db)

# The dataframe column names are used for the table's column names. 
# All dataframe entries are automatically inserted.
>>> database.create_table(table_name,df)
['timestamp', 'celsius']

# Add some more entries to the database, in this case duplicates of the above entry are made.
>>> database.insert(table_name,df)
True

# Read the content back into a dataframe
>>> database.table_to_df(table_name)
   celsius   timestamp
0     34.2  1587222785
1     23.3  1587222785
2     23.9  1587222786
3     23.3  1587222785
4     23.9  1587222786

# Remove the table from the database
>>> database.remove_table(table_name);
True

Example: Create a table, add an entry and return it as a Pandas dataframe.

from dbops.sqhelper import SQHelper

>> db = 'myDatabase.sql3'
>>> table_name = 'temperature'
>>> columns = {'timestamp': 'NUMERIC', 'celsius': 'REAL'}

# Create a class instance for a single database
>>> database = SQHelper(db)

# Add a table to the database
>>> database.create_table(table_name,columns)
['timestamp', 'celsius']

# Get all the tables in the database
>>> database.get_table_names()
['temperature']

# Add an entry to the database
>>> new_entry = {'timestamp': 1587222785, 'celsius': 34.2}
>>> database.insert(table_name, new_entry)
True

# Return the table as a Pandas Dataframe
df = database.table_to_df(table_name)

# Return all rows based on a column query, returns matching rows as dataframe
>>> database.get_row(table_name, 'celsius', 34.2);
   celsius   timestamp
0     34.2  1587222785

Use help(SQHelper) for more detailed information.

InfluxDB

from dbops.imfluxhelper import InfluxHelper

# Create a class instance for a single database
>>> database = InfluxHelper('database_name')

# Check the database is connected to OK
>>> database.exists()
True

# Add a new measurement to the database as a dictionary
>>> data = {'timestamp': 1585848415, 'temperature': 23.3, 'humidity': 12.2, 'room': 'kitchen', 'house': 'home'}
>>> measurement = 'Environment'
>>> fields = ['temperature', 'humidity']
>>> tags = ['room', 'house']
>>> database.insert(measurement, data, field_keys=fields, tag_keys=tags, use_timestamp=True)
True

# Add multiple measurements as a Pandas DataFrame
>>> data = [{
    'timestamp': 1585848415,
    'temperature': 23.3,
    'humidity': 12.2,
    'room': 'kitchen',
    'house': 'home'
}, {
    'timestamp': 1585848416,
    'temperature': 22.1,
    'humidity': 13.4,
    'room': 'bedroom',
    'house': 'home'
}]
>>> df = pd.DataFrame(data)
>>> measurement = 'Household'
>>> fields = ['temperature', 'humidity']
>>> tags = ['room', 'house']
>>> database.insert(measurement, df, field_keys=fields, tag_keys=tags, use_timestamp=use_time)
True

# Get all the measurements in the database
>>> database.get_measurement_names()
['Environment', 'Household']

# Get the last time based entry in a table
>>> last_time_entry = database.get_last_time_entry('Household', 'humidity', 'room', 'bedroom', as_unix=True)
>>> last_time_entry['last']
13.4
>>> last_time_entry['time']
1585848416

Use help(InfluxHelper) for more detailed information.

Version History

0.1.0:

  • Added interface for Influx Databases
  • Added some timestamp conversion utilities
  • Improved documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for db-ops, version 0.1.1
Filename, size File type Python version Upload date Hashes
Filename, size db_ops-0.1.1-py3-none-any.whl (10.8 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size db-ops-0.1.1.tar.gz (9.1 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page