Skip to main content

Collection of single cell models for the Arbor and NEURON simulators of the cerebellar

Project description

dbbs-models

Collection of neuron models for the NEURON simulator.

Citations

If you use our models for any scientific works you're required to cite the following papers:

Granule cell model

Masoli, S., Tognolina, M., Laforenza, U., Moccia, F., and D’Angelo, E. (2020). Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Commun. Biol. 3, 222. doi:10.1038/s42003-020-0953-x.

Golgi cell model

Masoli, S., Ottaviani, A., Casali, S., and D’Angelo, E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput. Biol. 16, 1–27. doi:10.1371/journal.pcbi.1007937.

Stellate cell model

Rizza, M. F., Locatelli, F., Masoli, S., Sánchez-Ponce, D., Muñoz, A., Prestori, F., et al. (2021). Stellate cell computational modeling predicts signal filtering in the molecular layer circuit of cerebellum. Sci. Rep. 11, 3873. doi:10.1038/s41598-021-83209-w.

Purkinje cell model

Masoli, S., Solinas, S., and D’Angelo, E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front. Cell. Neurosci. 9, 1–22. doi:10.3389/fncel.2015.00047.

Masoli, S., and D’Angelo, E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front. Cell. Neurosci. 11, 1–18. doi:10.3389/fncel.2017.00278.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbbs_models-4.0.0.tar.gz (367.9 kB view details)

Uploaded Source

Built Distribution

dbbs_models-4.0.0-py2.py3-none-any.whl (372.6 kB view details)

Uploaded Python 2Python 3

File details

Details for the file dbbs_models-4.0.0.tar.gz.

File metadata

  • Download URL: dbbs_models-4.0.0.tar.gz
  • Upload date:
  • Size: 367.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.6

File hashes

Hashes for dbbs_models-4.0.0.tar.gz
Algorithm Hash digest
SHA256 81456db608e0e25979bdb720311f9d48b520702bb41817a0bebbd902a6212a3a
MD5 7d78237162361ece8c763665eafa4911
BLAKE2b-256 c408022323b0f3ee0259fabddfc10d5782f3a7a4298d155470a0331fe0635af5

See more details on using hashes here.

File details

Details for the file dbbs_models-4.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: dbbs_models-4.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 372.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.6

File hashes

Hashes for dbbs_models-4.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6b6db8367a137c2450fb059c875420ca979c267d244c7276940c0241e8fcc4f8
MD5 96fbd1e675835e502bda5e50449aa52f
BLAKE2b-256 bf00be6f2d1f8f600dd8dd52a390717b0734a3e95daedce18844f7468632ae9d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page