Skip to main content

Collection of neuron models for the NEURON simulator

Project description

dbbs-models

Collection of neuron models for the NEURON simulator.

Citations

If you use our models for any scientific works you're required to cite the following papers:

Granule cell model

Masoli, S., Tognolina, M., Laforenza, U., Moccia, F., and D’Angelo, E. (2020). Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Commun. Biol. 3, 222. doi:10.1038/s42003-020-0953-x.

Golgi cell model

Masoli, S., Ottaviani, A., Casali, S., and D’Angelo, E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput. Biol. 16, 1–27. doi:10.1371/journal.pcbi.1007937.

Stellate cell model

Rizza, M. F., Locatelli, F., Masoli, S., Sánchez-Ponce, D., Muñoz, A., Prestori, F., et al. (2021). Stellate cell computational modeling predicts signal filtering in the molecular layer circuit of cerebellum. Sci. Rep. 11, 3873. doi:10.1038/s41598-021-83209-w.

Purkinje cell model

Masoli, S., Solinas, S., and D’Angelo, E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front. Cell. Neurosci. 9, 1–22. doi:10.3389/fncel.2015.00047.

Masoli, S., and D’Angelo, E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front. Cell. Neurosci. 11, 1–18. doi:10.3389/fncel.2017.00278.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbbs-models-4.0.0a0.tar.gz (369.4 kB view details)

Uploaded Source

Built Distribution

dbbs_models-4.0.0a0-py3-none-any.whl (373.7 kB view details)

Uploaded Python 3

File details

Details for the file dbbs-models-4.0.0a0.tar.gz.

File metadata

  • Download URL: dbbs-models-4.0.0a0.tar.gz
  • Upload date:
  • Size: 369.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for dbbs-models-4.0.0a0.tar.gz
Algorithm Hash digest
SHA256 fae51bcdd23555969cd95bbca25720c22db426907f219c212264347521c27942
MD5 b0aba7dc2acf8018a2bf6441ad39de93
BLAKE2b-256 d099708bee886bc4c134a40ca0f6b27f7e29d8ecd2bc6a8e70e9d766b06bfa5e

See more details on using hashes here.

File details

Details for the file dbbs_models-4.0.0a0-py3-none-any.whl.

File metadata

File hashes

Hashes for dbbs_models-4.0.0a0-py3-none-any.whl
Algorithm Hash digest
SHA256 6457b55152f87b3680b14e3ae1cd50a96cbec9a1571653109eabcd51b039a307
MD5 87652925796ffb405bd14f1733c8e8bd
BLAKE2b-256 10f37195bf776bf9a41f3c325408fff283be2bd6e7428434c92189a03d6cdd24

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page