Collection of single cell models for the Arbor and NEURON simulators of the cerebellar
Project description
dbbs-models
Collection of neuron models for the NEURON simulator.
Citations
If you use our models for any scientific works you're required to cite the following papers:
Granule cell model
Masoli, S., Tognolina, M., Laforenza, U., Moccia, F., and D’Angelo, E. (2020). Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Commun. Biol. 3, 222. doi:10.1038/s42003-020-0953-x.
Golgi cell model
Masoli, S., Ottaviani, A., Casali, S., and D’Angelo, E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput. Biol. 16, 1–27. doi:10.1371/journal.pcbi.1007937.
Stellate cell model
Rizza, M. F., Locatelli, F., Masoli, S., Sánchez-Ponce, D., Muñoz, A., Prestori, F., et al. (2021). Stellate cell computational modeling predicts signal filtering in the molecular layer circuit of cerebellum. Sci. Rep. 11, 3873. doi:10.1038/s41598-021-83209-w.
Purkinje cell model
Masoli, S., Solinas, S., and D’Angelo, E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front. Cell. Neurosci. 9, 1–22. doi:10.3389/fncel.2015.00047.
Masoli, S., and D’Angelo, E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front. Cell. Neurosci. 11, 1–18. doi:10.3389/fncel.2017.00278.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dbbs-models-4.0.0b0.tar.gz
.
File metadata
- Download URL: dbbs-models-4.0.0b0.tar.gz
- Upload date:
- Size: 378.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.31.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5dd6d538c8200afebfe3c19a791cd1fb1350dca5216b8f1b351ce573110fe4c |
|
MD5 | 5b5498284ece25a73b5bc8899af0a838 |
|
BLAKE2b-256 | 463181df4c0d503f9c5058501628c0134e8968dc6bbbcbe044017be9953454a7 |
File details
Details for the file dbbs_models-4.0.0b0-py2.py3-none-any.whl
.
File metadata
- Download URL: dbbs_models-4.0.0b0-py2.py3-none-any.whl
- Upload date:
- Size: 372.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.31.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a52582ab7aee66bdfe0659c4b2c59e4b75e4fe2bbb0b528b5f6d76852fe8a4c3 |
|
MD5 | ebae98191738695adf4e27175da9bb5c |
|
BLAKE2b-256 | 3ede419885db2e9d97d2c27e5135ef1366d830ba64856b1e452b0e611d935585 |