Skip to main content

Collection of single cell models for the Arbor and NEURON simulators of the cerebellar

Project description

dbbs-models

Collection of neuron models for the NEURON simulator.

Citations

If you use our models for any scientific works you're required to cite the following papers:

Granule cell model

Masoli, S., Tognolina, M., Laforenza, U., Moccia, F., and D’Angelo, E. (2020). Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Commun. Biol. 3, 222. doi:10.1038/s42003-020-0953-x.

Golgi cell model

Masoli, S., Ottaviani, A., Casali, S., and D’Angelo, E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput. Biol. 16, 1–27. doi:10.1371/journal.pcbi.1007937.

Stellate cell model

Rizza, M. F., Locatelli, F., Masoli, S., Sánchez-Ponce, D., Muñoz, A., Prestori, F., et al. (2021). Stellate cell computational modeling predicts signal filtering in the molecular layer circuit of cerebellum. Sci. Rep. 11, 3873. doi:10.1038/s41598-021-83209-w.

Purkinje cell model

Masoli, S., Solinas, S., and D’Angelo, E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front. Cell. Neurosci. 9, 1–22. doi:10.3389/fncel.2015.00047.

Masoli, S., and D’Angelo, E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front. Cell. Neurosci. 11, 1–18. doi:10.3389/fncel.2017.00278.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbbs-models-4.0.0b0.tar.gz (378.2 kB view details)

Uploaded Source

Built Distribution

dbbs_models-4.0.0b0-py2.py3-none-any.whl (372.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dbbs-models-4.0.0b0.tar.gz.

File metadata

  • Download URL: dbbs-models-4.0.0b0.tar.gz
  • Upload date:
  • Size: 378.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for dbbs-models-4.0.0b0.tar.gz
Algorithm Hash digest
SHA256 e5dd6d538c8200afebfe3c19a791cd1fb1350dca5216b8f1b351ce573110fe4c
MD5 5b5498284ece25a73b5bc8899af0a838
BLAKE2b-256 463181df4c0d503f9c5058501628c0134e8968dc6bbbcbe044017be9953454a7

See more details on using hashes here.

File details

Details for the file dbbs_models-4.0.0b0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for dbbs_models-4.0.0b0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a52582ab7aee66bdfe0659c4b2c59e4b75e4fe2bbb0b528b5f6d76852fe8a4c3
MD5 ebae98191738695adf4e27175da9bb5c
BLAKE2b-256 3ede419885db2e9d97d2c27e5135ef1366d830ba64856b1e452b0e611d935585

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page