Skip to main content

DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.

Project description

DB-GPT: AI Native Data App Development framework with AWEL(Agentic Workflow Expression Language) and Agents

What is DB-GPT?

🤖 DB-GPT is an open source AI native data app development framework with AWEL(Agentic Workflow Expression Language) and agents.

The purpose is to build infrastructure in the field of large models, through the development of multiple technical capabilities such as multi-model management (SMMF), Text2SQL effect optimization, RAG framework and optimization, Multi-Agents framework collaboration, AWEL (agent workflow orchestration), etc. Which makes large model applications with data simpler and more convenient.

🚀 In the Data 3.0 era, based on models and databases, enterprises and developers can build their own bespoke applications with less code.

AI-Native Data App



app_chat_v0 6

app_manage_chat_data_v0 6

chat_dashboard_display_v0 6

agent_prompt_awel_v0 6

Contents

Introduction

The architecture of DB-GPT is shown in the following figure:

The core capabilities include the following parts:

  • RAG (Retrieval Augmented Generation): RAG is currently the most practically implemented and urgently needed domain. DB-GPT has already implemented a framework based on RAG, allowing users to build knowledge-based applications using the RAG capabilities of DB-GPT.

  • GBI (Generative Business Intelligence): Generative BI is one of the core capabilities of the DB-GPT project, providing the foundational data intelligence technology to build enterprise report analysis and business insights.

  • Fine-tuning Framework: Model fine-tuning is an indispensable capability for any enterprise to implement in vertical and niche domains. DB-GPT provides a complete fine-tuning framework that integrates seamlessly with the DB-GPT project. In recent fine-tuning efforts, an accuracy rate based on the Spider dataset has been achieved at 82.5%.

  • Data-Driven Multi-Agents Framework: DB-GPT offers a data-driven self-evolving multi-agents framework, aiming to continuously make decisions and execute based on data.

  • Data Factory: The Data Factory is mainly about cleaning and processing trustworthy knowledge and data in the era of large models.

  • Data Sources: Integrating various data sources to seamlessly connect production business data to the core capabilities of DB-GPT.

SubModule

  • DB-GPT-Hub Text-to-SQL workflow with high performance by applying Supervised Fine-Tuning (SFT) on Large Language Models (LLMs).

  • dbgpts dbgpts is the official repository which contains some data apps、AWEL operators、AWEL workflow templates and agents which build upon DB-GPT.

Text2SQL Finetune

  • support llms

    • LLaMA
    • LLaMA-2
    • BLOOM
    • BLOOMZ
    • Falcon
    • Baichuan
    • Baichuan2
    • InternLM
    • Qwen
    • XVERSE
    • ChatGLM2
  • SFT Accuracy As of October 10, 2023, through the fine-tuning of an open-source model with 13 billion parameters using this project, we have achieved execution accuracy on the Spider dataset that surpasses even GPT-4!

More Information about Text2SQL finetune

Install

Docker Linux macOS Windows

Usage Tutorial

Features

At present, we have introduced several key features to showcase our current capabilities:

Image

🌐 AutoDL Image

Language Switching

In the .env configuration file, modify the LANGUAGE parameter to switch to different languages. The default is English (Chinese: zh, English: en, other languages to be added later).

Contribution

Contributors Wall

Licence

The MIT License (MIT)

Citation

If you find DB-GPT useful for your research or development, please cite the following paper:

@article{xue2023dbgpt,
      title={DB-GPT: Empowering Database Interactions with Private Large Language Models}, 
      author={Siqiao Xue and Caigao Jiang and Wenhui Shi and Fangyin Cheng and Keting Chen and Hongjun Yang and Zhiping Zhang and Jianshan He and Hongyang Zhang and Ganglin Wei and Wang Zhao and Fan Zhou and Danrui Qi and Hong Yi and Shaodong Liu and Faqiang Chen},
      year={2023},
      journal={arXiv preprint arXiv:2312.17449},
      url={https://arxiv.org/abs/2312.17449}
}

Contact Information

We are working on building a community, if you have any ideas for building the community, feel free to contact us.

Star History Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbgpt-0.6.1.tar.gz (556.2 kB view details)

Uploaded Source

Built Distribution

dbgpt-0.6.1-py3-none-any.whl (725.3 kB view details)

Uploaded Python 3

File details

Details for the file dbgpt-0.6.1.tar.gz.

File metadata

  • Download URL: dbgpt-0.6.1.tar.gz
  • Upload date:
  • Size: 556.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.14

File hashes

Hashes for dbgpt-0.6.1.tar.gz
Algorithm Hash digest
SHA256 16b5df58ffc335b759afe249e8c02ed8af5e63c06c30c33aa95a10dbc87c5891
MD5 c3c9f6edb76cc092ed7619fd2bc3a65b
BLAKE2b-256 51337a3c0a4ce79c03c74138def62d10683b1a4074d7b3f3a7bb33e1b91efde9

See more details on using hashes here.

File details

Details for the file dbgpt-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: dbgpt-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 725.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.14

File hashes

Hashes for dbgpt-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 50f770ef24d531128a9e6b58ade5c30dd0179c7e6292fb6d8e9a0df6f0c4d00f
MD5 fd74ad77a86e59e41ec9c6cb0515c575
BLAKE2b-256 9bb306bd2be44cec8adf45804130965251c10fc1ad0974426d72bf6fff1a33ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page