异步高并发dblp爬虫,慎用
Project description
dblp-crawler
Asynchronous high-concurrency dblp crawler, use with caution!
异步高并发dblp爬虫,慎用!
Crawl papers from dblp and connect them into an undirected graph. Each edge is a paper, each node is an author.
从dblp爬文章并将其组织为无向图。图的边是文章,节点是作者。
Neo4J output compatible with citation-crawler
Neo4J形式的输出和citation-crawler兼容
Install
pip install dblp-crawler
Usage
python -m dblp_crawler -h
usage: __main__.py [-h] [-y YEAR] -k KEYWORD [-p PID] [-j JOURNAL] {networkx,neo4j} ...
positional arguments:
{networkx,neo4j} sub-command help
networkx networkx help
neo4j neo4j help
optional arguments:
-h, --help show this help message and exit
-y YEAR, --year YEAR Only crawl the paper after the specified year.
-k KEYWORD, --keyword KEYWORD
Specify keyword rules.
-p PID, --pid PID Specified author pids to start crawling.
-j JOURNAL, --journal JOURNAL
Specify author journal keys to start crawling.
python -m dblp_crawler networkx -h
usage: __main__.py networkx [-h] --dest DEST
optional arguments:
-h, --help show this help message and exit
--dest DEST Path to write results.
python -m dblp_crawler neo4j -h
usage: __main__.py neo4j [-h] [--auth AUTH] --uri URI
optional arguments:
-h, --help show this help message and exit
--username USERNAME Auth username to neo4j database.
--password PASSWORD Auth password to neo4j database.
--uri URI URI to neo4j database.
--select Mark keyword-matched publications in database (set selected=true).
Config environment variables
DBLP_CRAWLER_MAX_CACHE_DAYS_PERSON
:- save cache for a person page for how many days
- default:
30
DBLP_CRAWLER_MAX_CACHE_DAYS_JOURNAL
:- save cache for a journal page (e.g. IEEE Transactions on Multimedia Volume 25, 2023) or conference page (e.g. 31st ACM Multimedia 2023) for how many days
- default:
-1
(cache forever)
DBLP_CRAWLER_MAX_CACHE_DAYS_JOURNAL_LIST
- save cache for a journal list page (e.g. IEEE Transactions on Multimedia) or conference list page (e.g. ACM Multimedia) for how many days
- default:
30
HTTP_PROXY
- Set it
http://your_user:your_password@your_proxy_url:your_proxy_port
if you want to use proxy
- Set it
HTTP_TIMEOUT
- Timeout for each http request, in seconds
HTTP_CONCORRENT
- Concurrent HTTP requests
- default:
8
Write to a JSON file
e.g. write to summary.json
:
python -m dblp_crawler -k video -k edge -p l/JiangchuanLiu networkx --dest summary.json
JSON format
{
"nodes": { // each node is a person
"<dblp id of a person>": {
"id": "<dblp id of this person>",
"label": "<name in dblp>",
"publications": [ // selected papers of this person (selected by "-k" and "-y" args)
"<dblp id of a paper>",
"<dblp id of a paper>",
"<dblp id of a paper>",
"......"
],
"person": { // detailed data of this person
"dblp_pid": "<dblp id of this person>",
"name": "<name in dblp>",
"affiliations": [
"<affiliation of this person>",
"<affiliation of this person>",
"......"
],
"publications": [ // all papers of this person
"<dblp id of a paper>",
"<dblp id of a paper>",
"<dblp id of a paper>",
"......"
]
}
},
"<dblp id of a person>": { ...... },
"<dblp id of a person>": { ...... },
"<dblp id of a person>": { ...... },
......
},
"edges": { // each node is a cooperation of two person
"<id of this edge>": {
"from": "<dblp id of this person 1>",
"to": "<dblp id of this person 2>",
"publications": [ // selected papers that contain both this two persons as authors (selected by "-k" and "-y" args)
"<dblp id of a paper>",
"<dblp id of a paper>",
"<dblp id of a paper>",
"......"
],
"cooperation": [ // all papers that contain both this two persons as authors (selected by "-k" and "-y" args)
"<dblp id of a paper>",
"<dblp id of a paper>",
"<dblp id of a paper>",
"......"
]
},
"publications": { // related publications
"<dblp id of a paper>": {
"key": "<dblp id of this paper>",
"title": "<title of this paper>",
"journal": "<name of the journal that this paper published on>",
"journal_key": "<dblp id of the journal that this paper published on>",
"year": "int <publish year of this paper>",
"doi": "<doi of this paper>",
"ccf": "A|B|C|N <CCF rank of this paper>",
"authors": {
"<dblp id of a person>": {
"name": "<name in dblp>",
"orcid": "<orcid of this person>"
},
"<dblp id of a person>": { ...... },
"<dblp id of a person>": { ...... },
......
},
"selected": "true|false <whether the publication is selected (selected by -k and -y args)>"
}
}
}
}
Write to a Neo4J database
docker pull neo4j
docker run --rm -it --name neo4j -p 7474:7474 -p 7687:7687 -v "$(pwd)/save/neo4j:/data" -e NEO4J_AUTH=none neo4j
e.g. write to neo4j://localhost:7687
:
python -m dblp_crawler -k video -k edge -p l/JiangchuanLiu neo4j --uri neo4j://localhost:7687
Tips
Without index, NEO4J query will be very very slow. So before you start, you should add some index:
CREATE INDEX publication_title_hash_index FOR (p:Publication) ON (p.title_hash);
CREATE INDEX publication_dblp_key_index FOR (p:Publication) ON (p.dblp_key);
CREATE INDEX publication_doi_index FOR (p:Publication) ON (p.doi);
CREATE INDEX person_dblp_pid_index FOR (p:Person) ON (p.dblp_pid);
CREATE INDEX journal_dblp_key_index FOR (p:Journal) ON (p.dblp_key);
Only crawl the paper after specified year
e.g. crawl the paper after 2016 (include 2016)
python -m dblp_crawler -k video -k edge -p l/JiangchuanLiu -y 2016 networkx --dest summary.json
Keywords with two or more words
e.g. super resolution (publications with title contains both "super" and "resolution" will be selected)
python -m dblp_crawler -k video -k edge -p l/JiangchuanLiu -k "'super','resolution'" networkx --dest summary.json
Init authors from journal
e.g. init authors from ACM MM and MMSys (db/conf/mm
is the key for ACM MM in dblp: "https://dblp.org/db/conf/mm/index.xml", db/conf/mmsys
is the key for MMSys in dblp: "https://dblp.org/db/conf/mmsys/index.xml")
python -m dblp_crawler -k video -k edge -j db/conf/mm -j db/conf/mmsys networkx --dest summary.json
Init authors from journal in some variables
e.g. there is a CCF_A
in dblp_crawler.data
contains keys of CCF A conferences, and MMSys is also great but not in CCF A
python -m dblp_crawler -k video -k edge -j "importlib.import_module('dblp_crawler.data').CCF_A" -j db/conf/mmsys networkx --dest summary.json
importlib.import_module
is flexible, you can import your own variables through this.
Init authors in some variables
e.g. want to crawl publications of those authors stored in neo4j database
python -m dblp_crawler -k video -k edge -p "importlib.import_module('dblp_crawler.data').authors_in_neo4j('neo4j://localhost:7687')" networkx --dest summary.json
importlib.import_module
is flexible, you can import your own variables through this.
dblp_crawler.filter
Usage
Crawling papers takes a long time, so do not filter the papers in the crawling process. Instead, use a separate program dblp_crawler
.filter` to filter the papers.
python -m dblp_crawler.filter -h
usage: __main__.py [-h] -i INPUT -o OUTPUT -f FILTER
optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT
Input file path.
-o OUTPUT, --output OUTPUT
Output file path.
-f FILTER, --filter FILTER
Filter functions.
Use internal filter
e.g. drop_old_publications
is an internal function that drop publication by year
python -m dblp_crawler.filter -i summary.json -o summary.filter.json -f "lambda summary: drop_old_publications(summary, 2016)"
Use multiple filters
e.g. drop_old_publications
is an internal function that drop publications by year; drop_nodes_by_all_publications
is an internal function that drop nodes by the sum of publications
python -m dblp_crawler.filter -i summary.json -o summary.filter.json \
-f "lambda summary: drop_old_person_publications(summary, 2018)" \
-f "lambda summary: drop_old_cooperation(summary, 2018)" \
-f "lambda summary: drop_nodes_by_all_publications(summary, 4)" \
-f "lambda summary: drop_edges_by_all_publications(summary, 4)"
Use your own filter
e.g. another method to use -f "lambda summary: drop_old_publications(summary, 2016)"
python -m dblp_crawler.filter -i summary.json -o summary.filter.json -f "lambda summary: importlib.import_module('dblp_crawler.filter').drop_old_publications(summary, 2016)"
importlib.import_module
is flexible, you can import your own variables through this.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file dblp_crawler-2.1.7.tar.gz
.
File metadata
- Download URL: dblp_crawler-2.1.7.tar.gz
- Upload date:
- Size: 35.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 746dd724da505a41de74292bbc95d39cb1ebcc1e9edbb7827c6f2e7653e2359a |
|
MD5 | fc6256fdb04dbf31a9f95eca2c2ed459 |
|
BLAKE2b-256 | 706afdd6ff50b4ce809caf9fed9767bc0e52e7af24670e9b963d7a5b51424ed4 |