Skip to main content

Machine Learning Orchestration

Project description


The dbnd-mlflow plugin allows storing mlflow metrics to DBND tracker together with duplicating them to the mlflow store.


pip install dbnd-mlflow
# or
pip install databand[mlflow]


# Databand store url should be defined

# Enable tracking to Databand store

# Optionally, define a URI for mlflow store, 
# mlflow.get_tracking_uri() is used by default
; duplicate_tracking_to=http://mlflow-store/

Run example

You might need to install examples at first pip install dbnd-examples.

dbnd run dbnd_examples.mlflow.run_mlflow_in_dbnd_task.mlflow_tracking_in_task_example

# or set configs manually
dbnd run dbnd_examples.mlflow.run_mlflow_in_dbnd_task.mlflow_tracking_in_task_example --set-config mlflow_tracking.databand_tracking=True


mlflow_example code

from dbnd import task
from mlflow import start_run, end_run
from mlflow import log_metric, log_param

def mlflow_example():
    # params
    log_param("param1", randint(0, 100))
    log_param("param2", randint(0, 100))
    # metrics
    log_metric("foo1", random())
    log_metric("foo2", random())

Execution flow:

  1. Run dbnd run mlflow_example --set-config mlflow_tracking.databand_tracking=True
  2. dbnd creates a new dbnd context
  3. dbnd_on_pre_init_context hook from dbnd_mlflow is triggered
    • a new uri is computed to be used by mlflow, e.g.:
      • dbnd://localhost:8081?duplicate_tracking_to=http%253A%252F%252Fmlflow-store%253A80%252F
    • the new uri is set to be used with mlflow.set_tracking_uri()
  4. mlflow_example task starts:
    1. mlflow.start_run()
      1. mlflow reads entry_points for each installed package and finds:
        • "dbnd = dbnd_mlflow.tracking_store:get_dbnd_store",
        • "dbnd+s = dbnd_mlflow.tracking_store:get_dbnd_store",
        • "databand = dbnd_mlflow.tracking_store:get_dbnd_store",
        • "databand+s = dbnd_mlflow.tracking_store:get_dbnd_store",
      2. mlflow creates TrackingStoreClient using the new uri
      3. uri schema instructs to use dbnd_mlflow.tracking_store:get_dbnd_store
        • get_dbnd_store creates dbnd TrackingAPIClient
        • get_dbnd_store creates mlflow tracking store to duplicate tracking to
        • get_dbnd_store returns DatabandStore instance
    2. log_param()/log_metric()
      • calls to DatabandStore
        • calls to TrackingAPIClient
        • calls to mlflow tracking store to duplicate tracking to
    3. mlflow.end_run()
  5. mlflow_example ends
  6. dbnd_on_exit_context hook from dbnd_mlflow is triggered
    • restore original mlflow tracking uri

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for dbnd-mlflow, version 0.24.36
Filename, size File type Python version Upload date Hashes
Filename, size dbnd_mlflow-0.24.36-py2.py3-none-any.whl (10.8 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size dbnd-mlflow-0.24.36.tar.gz (10.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page