Skip to main content

Database-agnostic SQL Interface for Postresql, MySQL, SQLite, DB2 and more

Project description

Introduction

DBPlus is a interface layer between the several python database interfaces and your program. It makes the SQL access from your program database-agnostic meaning the same code can run unmodified on several databases. All you need to change is the database URL. Of course if you use specific SQL that will only work on a certain database DBPlus can not change this.

Installation

The latest stable release from pypi: pip install dbplus

From github: Clone the repository using git and issue "pip install ."

Please note that DBPlus requires you to install the clients and their pre-req's:

  • DB2: ibm_db
  • SQLite: builtin into python (no client required)
  • MySQL: Mysql Connector
  • Oracle: CX_Oracle
  • Postgresql: psycopg2

Documentation : https://klaasbrant.github.io/DBPlus/ Documentation Status

Example

from dbplus import Database

# Examples of database urls

#db = Database('SQLite:///test.db')  # driver included in python
#db = Database('Postgres://<user>:<password>@127.0.0.1:5432/dvdrental') # requires psycopg2
#db = Database('MySQL://<user>:<password>@127.0.0.1:3306/test') # requires Mysql Connector
#db = Database('Oracle://<user>:<password>@127.0.0.1:1521/xe') # requires CX_Oracle

db = Database('DB2://db2demo:demodb2@192.168.1.222:50000/sample') # requires ibm_db

# Using named variables in query

rows = db.query('select * from klaas.emp where edlevel=:edlevel and workdept=:wd',edlevel=18,wd='A00')
print(rows,'\n')
print('rows[1]={}\n'.format(rows[1]))
df=rows.as_DataFrame()
print('csv to stdout, check the many options with dataframes!  \n',df.to_csv())

# Full transaction support

with db.transaction():
    # DELETE
    num = db.execute('DELETE FROM klaas.texample')
    print('Rows deleted from klaas.texample={} \n'.format(num))
    # INSERT
    for i in range(1, 11):
        db.execute('INSERT INTO klaas.texample VALUES (?,?)', i, i)
    # UPDATE
    num = db.execute('UPDATE klaas.texample SET col2 = col2+100  WHERE col1 > ?', 5)
    print ('Rows updated in klaas.texample={} \n'.format(num))

# transaction is now commited

print(db.query('select * from klaas.texample'))

Output from example above:

empno firstnme midinit lastname workdept phoneno hiredate job edlevel sex birthdate salary bonus comm
000010 CHRISTINE I HAAS A00 3978 1995-01-01 PRES 18 F 1963-08-24 152750.00 1000.00 4220.00
200010 DIAN J HEMMINGER A00 3978 1995-01-01 SALESREP 18 F 1973-08-14 46500.00 1000.00 4220.00

rows[1]=<Record {"empno": "200010", "firstnme": "DIAN", "midinit": "J", "lastname": "HEMMINGER", "workdept": "A00", "phoneno": "3978", "hiredate": "1995-01-01", "job": "SALESREP", "edlevel": 18, "sex": "F", "birthdate": "1973-08-14", "salary": "46500.00", "bonus": "1000.00", "comm": "4220.00"}>

csv to stdout, check the many options with dataframes! ,birthdate,bonus,comm,edlevel,empno,firstnme,hiredate,job,lastname,midinit,phoneno,salary,sex,workdept 0,1963-08-24,1000.00,4220.00,18,000010,CHRISTINE,1995-01-01,PRES ,HAAS,I,3978,152750.00,F,A00 1,1973-08-14,1000.00,4220.00,18,200010,DIAN,1995-01-01,SALESREP,HEMMINGER,J,3978,46500.00,F,A00

Rows deleted from klaas.texample=10

Rows updated in klaas.texample=5

col1 col2
1 1
2 2
3 3
4 4
5 5
6 106
7 107
8 108
9 109
10 110

What's next?

  • Add tests / bug fixing
  • Add more documentation / examples
  • more cool stuff and of course your suggestions are welcome

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DBPlus-0.4.1.tar.gz (16.7 kB view details)

Uploaded Source

File details

Details for the file DBPlus-0.4.1.tar.gz.

File metadata

  • Download URL: DBPlus-0.4.1.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for DBPlus-0.4.1.tar.gz
Algorithm Hash digest
SHA256 aa1565e3fd5c3398c798916db075cfd1fd56dce68d8705d99928c56a056a50d2
MD5 bc4b48f1bcecab55acd7f6a974b54d09
BLAKE2b-256 96d8bd6fb7babdf80ca1e604cd386d8a94c58e76123921736e777ee981c2468e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page