Skip to main content

Decision Boundary Sampler

Project description

Decision Boundary Sampler (DBS)

Downloads PyPI license Maintenance version made-with-rust

Contents

DBSampler is a package to sample points in the decision boundary of classification problems (binary or multiclass). It is theorically exact and efficient for very high dimensions. The guarentees:

  • Returns a sample of points uniformly distributed in the decision boundary.
  • Number of points is user defined. More points for a denser sample, less for a faster run.
  • The points are guarenteed to come from the edges of the condensed Voronoi Diagram (more below).

Installation

Pre-built packages currently for MacOS, Windows and Linux systems are available in PyPI and can be installed with:

pip install dbsampler

On uncommon architectures, you may need to first install Cargo before running pip install vlmc.

Compilation from source

In order to compile from source you will need to install Rust/Cargo and maturin for the python bindings. Maturin is best used within a Python virtual environment:

# activate your desired virtual environment first, then:
pip install maturin
git clone https://github.com/antonio-leitao/dbsampler.git
cd vlmc
# build and install the package:
maturin develop --release

Usage

import dbsampler
cover = dbsampler.dbs(data=X,labels=y,n_points=1000,n_epochs=5, sparse=True, parallel=True) 

Parameters:

  • data: numpy array of shape (samples,features) with the points of every class.
  • labels: 1-dimensional numpy array with labels of each points. Array must be flattened.
  • n_points: This determines the number of points sampled from the decision boundary. More points equates for a denser sample but slows the algorithm. Default is 1000.
  • sparse: boolean (default True), whether to remove points that are in the same Voronoi Edge or not.
  • parallel: boolean (default True)

Returns:

  • cover: numpy array (n_points, n_features) of points in the decision boundary.

Sparse

Passing the sparse flag will remove the cover points that fall on the same Voronoi Edge, favoring the first one. This can drastically reduce the number of points while maintaining a uniform and complete cover of the decision boundary. Below is the example of 5000 points sampled (left) and the same points with sparse=True.

Performance

DBSampler is written in Rust pre-builds the binaries for Windows, MacOS and most Linux distributions. DBSampler achieves very high performance due to effective parallization and BLAS support. Currently manages to calculate a cover of 5 000 points given 10 000 points in 500 dimensions in less than 10 seconds.

More improvments are planned targeted situations where the number of samples times the dimensions is higher than 1 billion where the current implmentations starts to slow down.

How does it work?

For an in-depth explanation check at our paper. The algorithm aims at sampling uniformly points from the edges of Voronoi Cells belonging to points of different classes. The union of these edges is the decision boundary that maximizes the distance between classes.

It starts by building an initial uniform sample of the space containing n_points. It then iterativelly "pushes" each point to the hyperplane orthogonal to the one between its closest neighbors of different classes.

Sketch of proof of convergence. At each iteration in n_epochs:

  1. If both nearest neighbours have adjacent Voronoi Cells then, after projection the point is in the decision boundary (by construction).
  2. Else then there must exist a point from class A (or not A) that is the new nearest neighbour (by definition of Voronoi Cells).

Citing

If you use DBSampler in your work or parts of the algorithm please consider citing:

@inproceedings{petri2020on,
               title={On The Topological Expressive Power of Neural Networks},
               author={Giovanni Petri and Ant{\'o}nio Leit{\~a}o},
               booktitle={NeurIPS 2020 Workshop on Topological Data Analysis and Beyond},
               year={2020},
               url={https://openreview.net/forum?id=I44kJPuvqPD}
}

In the paper above you can find the pseudocode of the algorithm along with the proof of convergence. A complete paper about the method is coming soon.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbsampler-0.2.2.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

dbsampler-0.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

dbsampler-0.2.2-cp312-none-win_amd64.whl (173.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

dbsampler-0.2.2-cp312-none-win32.whl (163.9 kB view details)

Uploaded CPython 3.12 Windows x86

dbsampler-0.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

dbsampler-0.2.2-cp312-cp312-macosx_11_0_arm64.whl (295.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

dbsampler-0.2.2-cp312-cp312-macosx_10_12_x86_64.whl (300.1 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

dbsampler-0.2.2-cp311-none-win_amd64.whl (173.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

dbsampler-0.2.2-cp311-none-win32.whl (164.2 kB view details)

Uploaded CPython 3.11 Windows x86

dbsampler-0.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

dbsampler-0.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

dbsampler-0.2.2-cp311-cp311-macosx_11_0_arm64.whl (295.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dbsampler-0.2.2-cp311-cp311-macosx_10_12_x86_64.whl (300.2 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

dbsampler-0.2.2-cp310-none-win_amd64.whl (173.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

dbsampler-0.2.2-cp310-none-win32.whl (164.2 kB view details)

Uploaded CPython 3.10 Windows x86

dbsampler-0.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

dbsampler-0.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

dbsampler-0.2.2-cp310-cp310-macosx_11_0_arm64.whl (295.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dbsampler-0.2.2-cp310-cp310-macosx_10_12_x86_64.whl (300.2 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

dbsampler-0.2.2-cp39-none-win_amd64.whl (173.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

dbsampler-0.2.2-cp39-none-win32.whl (164.3 kB view details)

Uploaded CPython 3.9 Windows x86

dbsampler-0.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

dbsampler-0.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

dbsampler-0.2.2-cp38-none-win_amd64.whl (173.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

dbsampler-0.2.2-cp38-none-win32.whl (163.9 kB view details)

Uploaded CPython 3.8 Windows x86

dbsampler-0.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

dbsampler-0.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

dbsampler-0.2.2-cp37-none-win_amd64.whl (173.0 kB view details)

Uploaded CPython 3.7 Windows x86-64

dbsampler-0.2.2-cp37-none-win32.whl (163.8 kB view details)

Uploaded CPython 3.7 Windows x86

dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

dbsampler-0.2.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

File details

Details for the file dbsampler-0.2.2.tar.gz.

File metadata

  • Download URL: dbsampler-0.2.2.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dbsampler-0.2.2.tar.gz
Algorithm Hash digest
SHA256 7d30e0cda9f4aab8cc073036afce87d458394336a1c10835c8e9c82a05d47c36
MD5 be8dff030676f68e3e18a617b9aba27b
BLAKE2b-256 26f0952a17b5db0fae671e8e6d74359eaf60d0112ce6f07d18a0c31a30db5af6

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ab1f44dd4f215af6f6a90decdd040c2289a541519ca86319212ab83069a0485
MD5 4a15eaf26693f68bb2eb082e48bc4484
BLAKE2b-256 3dfde64f8e46c678de4358494816d121220c53f270a2c3354a2ac6b052e10429

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e13f217f292e9aa3ef314bc7114ddb27dd6a91bc3196a5ac64fe353515cb5afb
MD5 38c0267d8ac385bbedb365ff3cdef060
BLAKE2b-256 b1210437eaa615a24a8251437d576d77995d74c290893906f0a82b77f661e6ae

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7def2427b9851f237b71b58a23f9bfeb079f9220f5cffc4b3ba04eb297aa9f3
MD5 5d83276d4d109e9a18263df68bae8010
BLAKE2b-256 048022e5473b39fe623eca4726ee4f779c62a71334677ceb7557b69e1df6a87f

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a48b1e4355efd89a38b988618a649d129cb817d984c642e21dd32182064c72c3
MD5 e168ae81845c16ef111ec97fe6f220ab
BLAKE2b-256 08beaae13e09f781047e0a5a1d116f1e829c8b5cc5c81624622bdd4cedefc77b

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 44c706a90a573587a1888c5e8c1aeb74b2d36ca6e1da144659ee200546ef360e
MD5 c7b80ef60c073b7a5b18a3c03312110a
BLAKE2b-256 ebf20048ea6574d3b0f9b5785a3d1c240975b177b6a6b7a055bef999f9f31af9

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f40823500c630517d777fcc3a8b0bbaf13aa8202044f44971f4ccf824a113404
MD5 c808ac0029b799bf8c4ef1a765cb9e61
BLAKE2b-256 1b64af0935a982cc729b66bf3a02830c098ed68e3589fb3a4f703ddb6799bda9

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8769acbfe53ab95c55789031ec88ee1cde125eb68548923733a219bb0abcbfb7
MD5 941d42a015abd8c58436b025007f4555
BLAKE2b-256 b624d12f85e86173592f8f9097456f4fd615258f6217438f706b4fe965b75f5c

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 dfa0e0ca0b4ff2854f335edde30aa177f41b97f0cc9a05ee9474d463219c92ab
MD5 d42950e2f58601ef98ec470009a87a46
BLAKE2b-256 17fe82620179a8ba553d9b5dbdca6239250cedc86f376a0fd9423f70580aa055

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7058b5ab80bfd91c43a62951436fff44524028b0cfc05b6bf23b945e4b0eb47d
MD5 994b925b5d221280519726054e77f5a7
BLAKE2b-256 33391504a21cb52f1b8f429478fc4858c3ac1ae0cb5e90a0fd0cce2779d3101d

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 14d9b32fd17a1f1a086a348260ecaef2acaa2e8b578ab274bf45e758f05cd224
MD5 a5263073d906213d9eb309cfe0a1e00e
BLAKE2b-256 beb06c217bef53cb8a2830b11dd03c15a49930e0d8ae3e4fa8b365ab0a5b0e06

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fc4d23e65765ebb3df2d8588065a2501516d49e065ce50bf099c5b774ef8e4b8
MD5 1300b402fa12a2d1edfae416e7dcff80
BLAKE2b-256 7fd9c4d5e28d4fdc82daa913494f9aeac7f31d621725fed84a0bae5dfa49201f

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 3a1f02ed0df4431a0598e4df0518b1053d0fcafa4a73acf471a457f437bc75d0
MD5 f3411c3a7a05c4725ef09c77c7c57f42
BLAKE2b-256 5f1812607e52ad5e4e7a282f7c8287eb6fbe81442d3df3783430d9df67d1d3d5

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0a0db88684c35ee81b31851aae356e00253f8f20bacbd786bdfe8b7addc83cc
MD5 32b2bc437eb441d57bc4ec577d42a173
BLAKE2b-256 1f97609775863cc834f3e0aa9f00f9d10c562609645e31da013675825a29bdd8

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 33ed21b74326edc1333a742d43fc430bc03d5780725ae3743711f8d725a51805
MD5 bcaaf72fcf035cc817055b6c2fb323ca
BLAKE2b-256 c23563d0a4a65d9cdec3826d9b9e46ce8fabcf284b68f61387b63037f3c124b9

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35b466ae9e5592e0cf4c89d97edbb88a2a3e6f4c30dfc14c0c014e1c10200f45
MD5 d494b61db98994f396f652bd6eb7b064
BLAKE2b-256 2dbf1c1e9df81d4cbc5a9604c3c314b968c36e8f5d288c7910253ade1bb780e4

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4ad43a60264de98c3a3d544311499563c502f742997adbc7c39282af194870be
MD5 e432a9e85417510c278ff3fbf259b501
BLAKE2b-256 1650cc3e895c53d71fa3ce5e99c8fccb3f83f0db258e88af0797303b95210102

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7764b4fdba5704d1b662de81410eadae1f36384d16ef7109b95bbf3cad491b85
MD5 c3e2d49b5e6b49c2938448d6053d84ea
BLAKE2b-256 b4ac6e4c3c483944cc95bc450ec3d18a427b8145b38a383c0026b07fb959efbf

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ceb503d690fd441c30e48da2d79c0d84b0cadd1e9f58ef60b6f73ec9ad10a75c
MD5 41288ba4a4c33cc17f4f12dadd10ab03
BLAKE2b-256 25eb9b5466b967273abb6e55c036f7a68cfc08af3ed8d6bba5123e406e6f74c2

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a60eaf7520ea001cdd41d1579f35de9bbcc05e095922fe4602f71625e28b84f7
MD5 7add458de7209086afb1935cc7c91dde
BLAKE2b-256 7ba38aebd526613e09198d42dea5ad96cfac3414fcdcb09e91beb792aef1a7fa

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 345c18a29a0cbd51cdbcd9885801b3bb136c83219f7bd87956a6cf13639a9393
MD5 37fd81389d17b493a389d41688b7be60
BLAKE2b-256 43d091c8256f73a59e55fe0ee3cf83b06986e6903584452bb9f73b5866989103

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 dbdabf1fdb24dfece4dd023c636fd2256303bdf2f6d150624a94a7f2c1c9d801
MD5 869dbf9f850ceeb91f0b39698a5ee56c
BLAKE2b-256 93e9a9f7cae6fd0e994845117770d5fa94a2490841692587f49f733d81bc9879

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-none-win32.whl.

File metadata

  • Download URL: dbsampler-0.2.2-cp312-none-win32.whl
  • Upload date:
  • Size: 163.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dbsampler-0.2.2-cp312-none-win32.whl
Algorithm Hash digest
SHA256 c1d91dd8b4f3e91850225dec31ce693666eb0a84724847b2553b823a012827b4
MD5 d5f90c4bba108bbf69ccec43a0548540
BLAKE2b-256 fb9bfdd85791fc2a3bf478c656f7aa0004dfa603e592ea993eed2f89248c5eff

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 170d6a99eb0ec685f15f149e10dc7008dbb1d62c3caf3518eb4bb804f1824f0f
MD5 4e758f7e8bcfccdb5ceafb778ae6a72c
BLAKE2b-256 9469c1adc024823bedff8b1b7dfa48272fe9e8d350823bac3f5255edcfc268f1

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7b7095fcaa91b7f047040c2521692b046651ae1340258f29b86529eedafcd4d4
MD5 3ce03280e67e81ef4dfa5019602bd835
BLAKE2b-256 055bb99a057666beb1c3188d3e9a713ddf3dd738ef3ec6ef135bba63bfd8611e

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d7d0a1b0e0d71626904bd1bc1030ac832b921b53511073e953576cefd8235d61
MD5 ec102c64874847546ee81370faa80099
BLAKE2b-256 15d46510f1f93b43ee771c4f0f6aac67a1de852d04de755de41904f50cb01e01

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 842c01375ecdc9869c5608b9451079f4f9c104c0f203f1cfb214940b8b769bf8
MD5 dd0f096439478bb02e55547bbd586573
BLAKE2b-256 6f200a166e489f6b4703e0b8631b6a34c8284c46a7a18d2234583d63e6e4e77b

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f90d754860697e663b3e1de9d9b45892d32646c144637c982bd803bfc1fc34ea
MD5 0dc809a015e869978fd3c7ab3bf964e3
BLAKE2b-256 05d19742e7e4e0ab80045eb17d3c43da8d8f11966e4aa836fc524499e05d2b1b

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c39b72abf1c119fc51e51fe8de6cee185821fb79b6ef61bd6be5eb52a2c07a3
MD5 55c2a384dfa5534dc7c8a8da46963695
BLAKE2b-256 1503b623ca26e1254b79a731d5ae40918b604cd7593cf3a967180cccc3f28fdb

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 67280546dd353286ec5d7efa2891ef1273ae9134961d93f119526cf44f7e6e44
MD5 f7df1a31ffe7733f5e40677244feaebc
BLAKE2b-256 f2f01b80848f349d71b26706810dbfda2349bbede278e56778a6c8319120dc80

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 919c1cc7bfd103344267ae4114ac173cf7ee1f93aa1e6c88235e798edbc74a6e
MD5 71f134e0588ab2539e3a4e4c3df870a5
BLAKE2b-256 2882452e8b6a9b4ae407b37d29ac324582cbe0f558bf3271483285e4c5e356a7

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-none-win32.whl.

File metadata

  • Download URL: dbsampler-0.2.2-cp311-none-win32.whl
  • Upload date:
  • Size: 164.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dbsampler-0.2.2-cp311-none-win32.whl
Algorithm Hash digest
SHA256 933c79d431584b51d407bbac4dc33538783f777bf9b16f8255e1e12c5cfc70f2
MD5 20855d19d40038987d11e14f07ed3742
BLAKE2b-256 4f91776459221bddff36628abf21b38ad2344719f30a28fe492abd8f74ac1676

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2973c8c918cf08fb82932400dec6b4a1d4b7a75d9ca9bbffb1624cce28a190b1
MD5 fad1b8e4d9ebe7dccab97928b7a5b8e1
BLAKE2b-256 c2649cbb2604ca095de4c6bd8813be0c903902095062f5d54890b372d17745ac

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d9f720c1f9406e1b0474fd9024056baa79d3d4f6930021dff641eb94077c2a47
MD5 4bdbb365c52ec2dc2e163d4b804708d2
BLAKE2b-256 4e3cf3b2ab4f2b5b07e273fa15c93d469500b20f76fa0de029df4d02606c9847

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7d7ffb925b0ce95f705dd83f747aab48555f575c3ae7eb4c5a138630fedace98
MD5 7f49843e9ade3bb53bb8c694f56b36f6
BLAKE2b-256 6074a63eecb729ea9f309ffa34ab68c55bd0f50410dfc89ad8d39ad2ca98100b

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 91f31508cb41e7e69c0c6dd01e17b2520e2351afd273860d846b537540817109
MD5 86d3d032b8adeeb5630e7883c5ba83bc
BLAKE2b-256 290d1ca07c6bd23b276d58a22f4d3b9d3dfe1cadeed7f74c54a9416498e96bb4

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa8ac30d52ce1b15b46967ce3c2bb91141ef552d62b0b1e9eb34b6e5a3ed866e
MD5 6b6a5cba35bbb1f88768f8d2a1fc4858
BLAKE2b-256 5b8f3f451920ef58643c95440e706fa13ab69c4e93d3720fb5649f0ce569052f

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c78be1d2d1e3051cbd2c8e89ac1a8e4604b292a27334a41b5aec61ace2738ce3
MD5 86e879b180d2f3974905cf59ce722323
BLAKE2b-256 4f4ca7105a1de76a4501eb51e44f8b4c96d8861a89fb0c82f38aca95d3bdc374

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d3167e50e5f8efb9693f4c2b02e6eed63f68cbacfe7ea890207b2b16531ccdd
MD5 1591a7bfbbc8d4977e43e930dc36597b
BLAKE2b-256 3e188e34f830385eef3860a6ab66373d2ec7295b8e89e46075b721d9fa5d40bb

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 3b040a3859bfb9a5759e2c3f95dd9c90491d0cf9d649b955366a635fa9f7bb37
MD5 e391e3bf133e6d97c49f37c2a444f798
BLAKE2b-256 a2d477398aeb51b0d11401339e8b5bff5bca5bc336cf4f5203faabca62fbfedd

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 861a4796271382fd6d93d28b753f868eb750ad2482c93077ef18b6c9a9c8e850
MD5 8950b9e0ed6d39eaa8ad4df872a1f70b
BLAKE2b-256 2dac37112d4a1433898ccd31f81c372443c04a0dfa3336a1dfd3be20ab2f368b

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-none-win32.whl.

File metadata

  • Download URL: dbsampler-0.2.2-cp310-none-win32.whl
  • Upload date:
  • Size: 164.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dbsampler-0.2.2-cp310-none-win32.whl
Algorithm Hash digest
SHA256 ab35d05efa5fbcbf7f6f10d58e2899505f2f32961aa29c806107d601c7e739d5
MD5 c79e837ebe3e5c02c98a1c4dc27265fa
BLAKE2b-256 5d4b0c267adaa0309b6f4aa13f032c8ffd7d7ad62670beecefdf413bf49e0dc8

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bffdaea12c867f6cfc38fe9c3a6b3bcd3592c629e538abbeeb67b5756181441
MD5 dc41ca2d31c6d3e02a0265b68eb22b81
BLAKE2b-256 ba5e8a8748885d850091d0d9c043c337853539bb3706d820061f955dd892fbcb

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 00ae0ec13c0caffc40dda111fcd5f35a95d9c62da8d2eccbf27b1b6fa9559ba0
MD5 b4c5db76d04478e62f8159413f5eb3a4
BLAKE2b-256 65f0ee83191049d46820f704422e7af365048c1693c83c78b4f5fe6592c11387

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ba70210e6beaea3f102ef5c2bbcb2b8bb18f6274cf4cd4e86899b9c929e0dd00
MD5 255003aa6f38917306c60ca2c9a78059
BLAKE2b-256 459b3f533c4e5bb677bb1181abade6b46a7d7a137e6aafc15d6e830bf414d74d

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f5ff271948680e149488250fffa9c23ff603aaee998c4714a4929ce531ed4172
MD5 f3bd557a36437b066bbea3a2168f7534
BLAKE2b-256 f3734ff92f320b0f7505ff7d68b5cadc680b0f71b28fc990026034e85da90eca

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2d78fb659eec6ea267afba0857c35e94c127021730ef97ef4f76e13426a3d5c0
MD5 e99a7af20e4a4d7a1e6551c9964be8c1
BLAKE2b-256 c51cbc58bfd77a779b334b989204d708093ee283ebace8829f54407e44d1e3fd

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c5716df6ea3e931febdb238614d9ca7c442322375a21f122df35c28d35720bdc
MD5 6aa53ecf67354391f505e7681aee198d
BLAKE2b-256 9a7cfe2dcb693bde44f641cd60b7ed772b59d585c309757ed7c8b388397d9f78

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c75627d7bcd712bf07d73a01aaa89b7acecbdfa802929ea7ea02838f94d3388
MD5 ee9dd832ed617da95adff082cba5b336
BLAKE2b-256 e8c4c7643f4a51b63748f7db5f4f0c7ef6ab5c0210efee553f2c12af3b49f6f9

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 560353fd9997b9768c09132702ee0f21f6324b444062365ad75e1aeca32fd99b
MD5 2fe74da2bf73c1153613f5bb88847b29
BLAKE2b-256 dc99d966123f746f65c6144d32677771e241d90134f8b61553eda027b2d54576

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 d4aca786b33104d21a2b40b486bf7f28efa48e0464c92d6c914528c2e71ba537
MD5 174e6452825cabff99a13250cdc34dd7
BLAKE2b-256 c054cd0d88b6e3414c038dabdab9ed05428b610ac8de2ea84f45a502a00be222

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp39-none-win32.whl.

File metadata

  • Download URL: dbsampler-0.2.2-cp39-none-win32.whl
  • Upload date:
  • Size: 164.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dbsampler-0.2.2-cp39-none-win32.whl
Algorithm Hash digest
SHA256 9462b83f4438bb2caefeac31453809ddbf3eea674bc1442da5826e2a401b3810
MD5 020f433255479500035393cee4550a2b
BLAKE2b-256 1999b6d8ef486a4058f534b2bdb86bca4b79e9e9861332926871f12592c02665

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 749ef99a5faa1328d91d345c63cbe52d9c4ac8248cb418a9f525b69c7c35efe0
MD5 7c6685427511f3b9ce7c92751a7bd5bb
BLAKE2b-256 e7d6784ba4e0a3c640472637941ea94c92ec9f3e4f359f9152c4505dd76d6f02

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0d622fb5c3eebc40ab5d82728dd4fbdad286ccaefc7db8aa8b756dc4c4ce71c7
MD5 639000dba4bb3ad3b8191124372795af
BLAKE2b-256 2bfc19299cbda1f6472ff4311a64f17fd671153ec07f40692bc5305e2fd98970

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 58a252047520778efb29d6678e61889122e408a3a62e78800be25eab3989d459
MD5 d486b160001153fc6a7050885f683163
BLAKE2b-256 3b75c3a36cfd59ec6e1063c4616eb2017e958032ddeb2ace242d7f61de4f38b2

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 764743d96359b45e3e51bb7aa20e821bafca302ea9f41e361036135aaa15e9cb
MD5 a3bcea0d1b1001299ed170671cff8b5d
BLAKE2b-256 3a32fd65976208e6a10dfe8d08525b6d9ba43424f388aca0850e8ce6fec66a1c

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96a17fe4b3af8272ae681fe89c22c0cfe50e7c2270017c136ed5f85b8cf48385
MD5 312bfdaf035d9003a7763396fe387030
BLAKE2b-256 47d574e35bd8064a68c61d554e149878c6f6f3b72f22ceaf266c6b9ecdd5be40

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f44b1d07c16252e47b05e31076d31478678c0e32832a9efcda225fcc8ff19c26
MD5 858dbe8cd0a3b96f0cf661de8b2fb264
BLAKE2b-256 b839c8925001c3d55fadee2dc7fa55d09688b9e6d0c3b6e680e3d61e16619303

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 ee3939cfd6f7bb3a089f5285bc8abcf9a0a57842a2151aea57985ad9ea58bd9d
MD5 5f9f578e8e0da9d39b1eb9f6cdedf868
BLAKE2b-256 d9af0f673995db6f02a4615a1a8b41fc578b1c89e2f33f2bd3288882abd03d41

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp38-none-win32.whl.

File metadata

  • Download URL: dbsampler-0.2.2-cp38-none-win32.whl
  • Upload date:
  • Size: 163.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dbsampler-0.2.2-cp38-none-win32.whl
Algorithm Hash digest
SHA256 b78e76768f474ed745bc07bc4ae954cabe216cfe943fb68f88869584fe90406b
MD5 963a13dccec64613641ca465b6d33c04
BLAKE2b-256 0b0fa0cf53b212956144d7d8cedb588d2f86cd351bef15094d7b4796016ee81c

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55a16b8325ff99cadedc4a9a24ac408cb4efbfbed25feb167d4f3f3dc05b4d13
MD5 93d9e28468397c82c0faf0c1550ae526
BLAKE2b-256 090b2c7f21c3b884c4bef62b229d123e509c79f4dc0f0675cefe242ec7fa4c31

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ba8ff13e032a2a1be5feb62468ac0b465c843851b4c23316a61d81244cef003f
MD5 64de2cdde9633710356794076a191432
BLAKE2b-256 5bb30180dd0688df0b9eb780f860d52863fc81cf463b8ba3005011226d46c036

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9bd8f3c4b2885e150427dc96a1bec5b18f7a74ee7c2c9848799522bdcb0b6bb1
MD5 6bbbd92d55e841e6a53c15c294e57533
BLAKE2b-256 fe64304e719afe048dc22f7dea8fb3d70b2849939eb4a585938821b724222ffa

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a89a42cab0c5db6ab825ec54f07f9ef67fe4069514ef9fc5e13002c4801f255f
MD5 24e3e93f711fb24f17f0720dc5a8e011
BLAKE2b-256 7ba1582dfb0769382bd7cdcb633039bdddea3f82a3831d266c91bbfff7427c7c

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f9bdb5d150022256c14ff9e7ed67e8fa436d94ab327558d9068867a69d431c2a
MD5 6516c9df207c5c4cd19bb42f857996eb
BLAKE2b-256 2524c0fd3906efca49dce7064dbf121cf521b8f51ceea020a4b9fa8e1a50db5a

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2bcec05a808d124e9802c85a23301bed31199ac864d6efa9ad6c3d8e0a1cdc00
MD5 05b1280958879db2f98afd7adc175396
BLAKE2b-256 3d9980be422e95b2ad21c33e75d8a0f9449e710c86d97f3cad0362cf9b83f2ea

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 592fa92e381d1cc39b773cfd320c81e32aad6426c2f0810552c073a09edb6be5
MD5 f31cf9ef7f1b4be6dc8953d49880fe60
BLAKE2b-256 130c235f99c9aea2b91ba78613e247f72f6b1efaaff021a7f28cbb5e8f1fa4cd

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp37-none-win32.whl.

File metadata

  • Download URL: dbsampler-0.2.2-cp37-none-win32.whl
  • Upload date:
  • Size: 163.8 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for dbsampler-0.2.2-cp37-none-win32.whl
Algorithm Hash digest
SHA256 19eaf14cdc84b793b34df61e015d885d93d84f2218e2de55eb7e898dee1ae74d
MD5 a99cc03ff210e6e43655ec4aab5a4f9a
BLAKE2b-256 7eaae04184bf2d05d7c289eaa53f4d654d9fd881eb6b5e7177f3f144e63c1a50

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1112d4dd10013905aa70004191b3b73dc3cb0dcbfae6577ef900828b4dd9aa48
MD5 34b2539ecfceb72cc070222dd4ef3e28
BLAKE2b-256 57d7fb32e0b69eeae691b17619424cf8a13ae5984c914e74fd6d4a8371d66d80

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 409da46a34d1d7211664783ad6086eeb865f937cd350a0d200f2df8e5ee95feb
MD5 e8256ba1a016f875692b2a5dc3f99dc8
BLAKE2b-256 1ba3152ce45aeffc410cf81718688833ad74ae3e319555c717be65339cb651b9

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4d03750347555ae4b6ea306a85115877fe7131553d6a821c68f9282633832d1c
MD5 1945dce387c713130b974efeaf30c8d0
BLAKE2b-256 a3fc998c0bd52d14b79241ca850e30cd69b91a255fafd4875e7c190fdd6a0ca4

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2cf5e056768c5215269f314461800b15dea9dd929d64c4038d3ef4411be81058
MD5 8f80273307dae92e78b32f473748104b
BLAKE2b-256 496e413293d84605aacf280b8dbf5e21db120c5e0ee868a01c0184e2fb491ca1

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8492535ea340560c3c8b88ac384998e289e46631f68d4a562ed45a82fe0146fa
MD5 cbefb4bd72d12c20aa0330c934f7481c
BLAKE2b-256 fc98cb288a0a55347c9202d6df6b8db0488f6de7dd2acebde510852cf36ac735

See more details on using hashes here.

File details

Details for the file dbsampler-0.2.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for dbsampler-0.2.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9dac978900e3c66662f2458b92045e4b35338f05a3cb68307e2e8e989dcc3796
MD5 a4778b0f603a934bdb90cf4c1bfe8453
BLAKE2b-256 b6608ac9d44f084f283dc21c4593c583d22c3c8190ff2ef02db0f40a6c08def7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page