Skip to main content

Python package for connecting and importing data from different DataBases

Project description

Database Connector Package

Overview

dbsconnector is a Python package designed to simplify data integration from various sources, including CSV, Excel, Google Sheets, and MongoDB. The package provides a unified interface to connect, load, and process data with minimal setup, making it easier for Developers and Data Scientists to work across multiple data formats.

Current Features:

  • Connect to CSV files and load them into a Pandas DataFrame
  • Handle Excel files with multiple sheets
  • Fetch data from Google Sheets using an API key
  • Interact with MongoDB collections

Future Features (Upcoming):

  • Support for more databases (SQL, NoSQL)
  • Cloud storage integration (AWS S3, Google Cloud, etc.)
  • API-based data sources

Installation

To install the package, use pip:

pip install dbsconnector==1.4

How to use this package?

Connecting to csv

# import the module:
from dbsconnector.databases import CSV

# load csv file:
df = CSV().load_csv(filepath="filedir/filename.csv", delimiter=",")

# convert dataframe to csv file:
CSV().to_csv(data=df, filepath="filepath.csv")

Connecting to Excel

# import the module:
from dbsconnector.databases import Excel

# load the data:
df = Excel().load_excelsheet(filepath='filedir/filename.xlsx', sheet_name='sheet_name')

# convert dataframe to excel sheet:
Excel().to_excel(data=df, filepath='filedir/filename.xlsx', sheet_name='sheet_name')

Connecting to gsheet

# import the module:
from dbsconnector.databases import GSheet

# load the data:
df = GSheet().load_gsheet(gsheet_id='17r9f4BL7sjmdLBnt92OdQP3CHK5bdT3hozg6DUJXGqU',sheet_name='sample_sheet')

Connecting to MongoDB

# import the module:
from dbsconnector.databases import MongoDB

# load data from mongodb:
df = MongoDB(host_url="mongodb://localhost:27017").load_data(database="database_name", collection_name="collection_name")

# upload data to mongodb:
MongoDB(host_url="mongodb://localhost:27017").upload_data(database="database_name", collection_name="collection_name", data=df)

# upload any kind of objects (preprocessor object or ML model object) to mongodb:
MongoDB(host_url="mongodb://localhost:27017").upload_object(database="database_name", collection_name="collection_name", object_name="preprocessor_object", object_=preprocessor)

# loading object from mongodb:
pre_obj = MongoDB(host_url="mongodb://localhost:27017").load_object(database="database_name", collection_name="collection_name", object_name="preprocessor_object")

Contributions

  • Contributions are welcome! Please open an issue or submit a pull request on GitHub for adding new features, fixing bugs, or improving documentation. Open-source collaboration is highly encouraged!

License

This project is licensed under the MIT License.

Contact

For any questions or suggestions, please contact yuvaneshkm05@gmail.com

Connect

Connect with me on LinkedIn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbsconnector-1.4.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

dbsconnector-1.4-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file dbsconnector-1.4.tar.gz.

File metadata

  • Download URL: dbsconnector-1.4.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for dbsconnector-1.4.tar.gz
Algorithm Hash digest
SHA256 9554774afe9c9edc4adc6150b4e7730e1691824d41df1470d829ea5aa63d55a0
MD5 82cad52115d135bfb56a0915877c325e
BLAKE2b-256 cb0ef001697cec9a2d226e49a4329bef9021994f9e2c763bb37c49d3d178470f

See more details on using hashes here.

File details

Details for the file dbsconnector-1.4-py3-none-any.whl.

File metadata

  • Download URL: dbsconnector-1.4-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for dbsconnector-1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 b44d18a60d1e18ec01b97080e66acac88410f96c59e6ef60487ab0dad8259305
MD5 8c2680caba34cf81cc51c4233e9ddffa
BLAKE2b-256 25f10f003e143076a377cdb141f7d22c0fd311839344bb4077cf4e87846a81cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page